PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lower Paleozoic oil and gas shale in the Baltic-Podlasie-Lublin Basin (central and eastern Europe) - a review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the Baltic-Podlasie-Lublin Basin, four potential lower Paleozoic shale reservoirs are identified: the Piaśnica, Sasino and Jantar formations, as well as the Mingajny shale. These units were diachronously deposited during the starved stages of Caledonian foredeep basin development, in the course of rising or high eustatic sea level. Across most of the basin, the shale formations analysed are saturated with light oil and condensate, and they are buried to depths of 2300-3500 m. The shale reservoirs reach the wet gas window at burial depths of 2800-4000 m, while dry gas accumulations occur at depths exceeding 3500-5000 m, except in the Biłgoraj-Narol Zone. The shale analysed might be generally classified as a moderate to low quality, and locally high quality, unconventional reservoir. Within the shale net pay zones, the average TOC content is 2-5 wt.% TOC. The exceptions are the Piaśnica Formation, for which this is 5-12 wt.%, and the Mingajny shale, which is TOC-lean (1.4-1.7 wt.%). The thickness of the shale net pay intervals in the most favourable locations, mainly on the Łeba Elevation, generally reaches 20 m, and locally exceeds 35 m. The shale reservoirs are saturated with hydrocarbons of good quality. Their permeability is low to moderate, often in the range of 150-200 mD, while total porosity average per borehole is commonly exceeds 6 %, reaching up to 10% at maximum, which might be considered as moderate to good. The clay minerals content is moderate to high (30-50%), and geomechanical characteristics of the shale formations are intermediate between brittle and ductile. No overpressure occurs in the basin, except for a dry gas zone in the SW Baltic Basin. In the Biłgoraj-Narol Zone, and to a lesser degree also in the Lublin region, pronounced tectonic deformation significantly limits shale gas/oil potential. Among 66 exploration boreholes drilled in the basin so far, only 5 were lateral boreholes with representative production test results. Hydrocarbon flow from the best boreholes was low to moderate, equal to 11.2 to 15.6 thousand m3/day for gas, and 157 bbl/day (~21.4 ton/day) for oil. There is, however, high potential to improve production flow rates, connected with the fracturing of two net pay intervals at one time, as well as with significant technological progress in the exploitation of shale basins during the last 5 years. Commercially viable production might be achieved for a single borehole with estimated ultimate recovery exceeding 30-50 thousand tons of oil, or 60-90 million m3 of gas.
Rocznik
Strony
515--566
Opis fizyczny
Bibliogr. 200 poz., tab., map., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Agrawal, V., Sharma, S., 2018. Improved kerogen models for determining thermal maturity and hydrocarbon potential of shale. Scientific Reports, 8: 17465. doi:10.1038/s41598-018-35560-8.
  • 2. Andersson , A., Dahlman, B., Gee, D.G., Snäll, S., 1985. The Scandinavian Alum shales. Sveriges Geologiska Undersökning, 56: 1-50.
  • 3. Anthonsen, K.L., Schovsbo, S., Britze, P., 2016. Overview of the current status and development of shale gas and shale oil in Europe. Report T3b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC- IET to GEUS.
  • 4. Bakun-Czubarow, N., Białowolska, A., Fedoryshyn, Y., 2002. Neoproterozoic flood basalts of Zabolottya and Babino Beds of the volcanogenic Volhynian Series and Polesie Series dolerites in the western margin of the East European Craton. Acta Geologica Polonica, 52: 481-496.
  • 5. Baltrănas, V. ed., 2004. Evolution of Earth Crust and its Resources in Lithuania (in Lithuanian with English summary). Publication of the Journal Lithosphere, Institute of Geology and Geography, Vilnius University, Vilnius.
  • 6. Bała, M., 2017. Characteristics of elastic parameters determined on the basis of well logging measurements and theoretical modeling, in selected formations in boreholes in the Baltic Basin and the Baltic offshore (in Polish with English summary). Nafta-Gaz, 73: 558-570.
  • 7. Bernard, S., Horsfield, B., 2014. Thermal maturation of gas shale systems. Annual Review of Earth and Planetary Sciences, 42: 635-651.
  • 8. Berthelsen, A., 1992. Mobile Europe. In: A Continent Revealed - the European Geotraverse (eds. D.J. Blundell, R. Freeman and S. Mueller): 11-32. Cambridge University Press, Cambridge.
  • 9. Bičkauskas, G., Šeštokas, I., Kanev, S., 2016. The view on Lithuania shale potential. AAPG Europe Region Conference - Hydrocarbon Exploration in Lithuania and Baltic Region, Vilnius, Abstract Book: 2, www.aapg.org/global/Europe.
  • 10. BNK, 2011. BNK Petroleum Corporate Presentation. BNK Petroleum Inc., December 2011, Camarillo.
  • 11. BNK, 2014. BNK Petroleum Corporate Presentation. BNK Petroleum Inc., April 2014, Camarillo.
  • 12. Bohacs, K.M., Passey, Q.R., Rudnicki, M., Esch, W.L., Lazar, O.R., 2013. The Spectrum of Fine-Grained Reservoirs from “Shale Gas” to “Shale Oil”/ Tight Liquids: Essential Attributes, Key Controls, Practical Characterization. European Association of Geoscientists and Engineers. International Petroleum Technology Conference, Mar 2013, Conference Proceedings, IPTC paper 16676. doi.org/10.3997/2214-4609-pdb.350.iptc16676.
  • 13. Boros, R., 2014. Mapping Shale Potential in Europe. The Newsletter of the Petroleum Exploration Society of Great Britain, June 2014: 81-83.
  • 14. Botor, D., Kotarba, M., Kosakowski, P., 2002. Petroleum generation in the Carboniferous strata of the Lublin Trough (Poland): an integrated geochemical and numerical modelling approach. Organic Geochemistry, 33: 461-476.
  • 15. Brangulis, A.P., Kanev, S.V., Margulis, L.S., Pomerantseva, R.A., 1993. Geology and hydrocarbon prospects of the Paleozoic in the Baltic region. In: Petroleum Geology of the NW Europe (ed. J.R. Parker): 651-656. Proceedings of the 4th Conference, London, Geological Society.
  • 16. Cander, H., 2013. Finding Sweet Spots in Shale Liquids and Gas Plays: with Lessons from the Eagle Ford Shale. Search and Discovery Article #41093, 46 pp. Www.searchanddiscovery.com/pdfz/documents/2013/41093cander/ndx_cander.pdf.html.
  • 17. Caricchi, C., Corrado, S., Di Paolo, L., Aldega, L., Grigo, D., 2015. Thermal maturity of Silurian deposits in the Baltic Syneclise (on-shore Polish Baltic Basin): contribution to unconventional resources assessment. Italian Journal of Geosciences, 135: 383-393.
  • 18. CEA, 2019. The Value of U.S. Energy Innovation and Policies Supporting the Shale Revolution. The Council of Economic Advisers. Washington, D.C.
  • 19. Charpentier, R.R., Cook, T.A., 2013. Variability of Oil and Gas Well Productivities for Continuous (Unconventional) Petroleum Accumulations. U.S. Department of the Interior, U.S. Geological Survey, Open-File Report, 2013-1001.
  • 20. Cichon-Pupienis, A., Littke, R., Froidl, F., Lazauskienė, J., 2020. Depositional history, source rock quality and thermal maturity of Upper Ordovician - lower Silurian fine-grained organic-rich sedimentary rocks in the central part of the Baltic Basin (Lithuania). Marine and Petroleum Geology, 112: 1-20.
  • 21. Cichostępski, K., Kwietniak, A., Dec, J., Kasperska, M., Pietsch, K., 2019. Integrated geophysical data for sweet spot identification in Baltic Basin, Poland. Annales Societatis Geologorum Poloniae, 89: 215-231.
  • 22. Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.-X., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199-204.
  • 23. Cocks, L.R.M., 2000. Early Palaeozoic geography of Europe. Journal of the Geological Society, 157: 1-10.
  • 24. De Kock, M.O., Beukes, N.J., Adeniyi, E.O., Cole, D., Götz, A.E., Geel, C., Ossa, F.-G., 2017. Deflating the shale gas potential of South Africa's Main Karoo basin. South African Journal of Science, 113, Art. #2016-0331.
  • 25. Dembicki, H., 2017. Practical Petroleum Geochemistry for Exploration and Production. Elsevier, Amsterdam. doi.org/10.1016/C2014-0-03244-3.
  • 26. Doornenbal, J.C., Stevenson, A.G. eds., 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. European Association of Geoscientists and Engineers Publications b.v., Houten.
  • 27. Domżalski, J., Górecki, W., Mazurek, A., Myśko, A., Strzetelski, W., Szamałek, K., 2004. The prospects for petroleum exploration in the eastern sector of Southern Baltic as revealed by sea bottom geochemical survey correlated with seismic data. Przegląd Geologiczny, 52: 792-799.
  • 28. Drygant, D., Modliński, Z., Szymański, B., 2006. Lithostratigraphical correlation of the Ordovician in the Biłgoraj-Narol area with deposits of the adjacent regions of the marginal zone of the East European Craton in Poland and Ukraine (in Polish with English summary). Przegląd Geologiczny, 54: 219-227.
  • 29. Dyrka, I., 2016. Petrophysical and mineralogical characterization of prospective hydrocarbon complexes estimated based on selected laboratory research results (in Polish with English summary). Przegląd Geologiczny, 64: 982-986.
  • 30. Dziadzio, P.S., Porębski, S.J., Kędzior, A., Liana, B., Lis, P., Paszkowski, M., Podhalańska, T., Ząbek, G., 2017. Architektura facjalna syluru zachodniej części kratonu wschodnioeuropejskiego (in Polish). In: Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów (eds. J. Golonka and S. Bębenek): 232-277. Wydawnictwo Arka, Cieszyn.
  • 31. EIA, 2011. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays. INTEK, U.S. Energy Information Administration, U.S. Department of Energy, Washington.
  • 32. EIA, 2013. Technically Recoverable Shale Oil and Shale Gas Resources: an Assessment of 137 Shale Formations in 41 Countries Outside the United States. Energy Information Administration, U.S. Department of Energy, Washington.
  • 33. EIA, 2016. Trends in U.S. Oil and Natural Gas Upstream Costs. Energy Information Administration, U.S. Department of Energy, Washington.
  • 34. Emetz, A., Piestrzyński, A., Zagnitko, V., 2004. Geological framework of the Volhyn copper fields with a review of the Volhyn flood basalt province (western margin of the East-European Craton). Annales Societatis Geologorum Poloniae, 74: 257-265.
  • 35. Eriksson, M., 2012. Stratigraphy, facies and depositional history of the Colonus Shale Trough, Skåne, southern Sweden. Department of Geology, Lund University, Lund.
  • 36. Filar, B., Kwilosz, T., Miziołek, M., Piesik-Buś, W., Zamojcin, J., 2015. The use of cluster analysis for the segmentation of the physicochemical properties of shale gas deposits. Nafta-Gaz, 71: 898-909.
  • 37. Gao, W., Iqbal, J., Xu, D., Sui, H., Hu, R., 2019. Effect of brittle mineral size on hydraulic fracture propagation in shale gas reservoir. Geofluids, Article ID 9147048. doi.org/10.1155/2019/9147048.
  • 38. Gareckij, R.G., Zinovienko, G.V., Visnjakov, I.B., Glusko, V.V., Pomjanovskaja, G.M., Lvov, G.M., 1987. Die perikratone Baltik-Dnestr-Senkungszone. Zeitschrift für angewandte Geologie, 33: 207-213.
  • 39. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B.M., Littke, R., 2013. Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123: 34-51.
  • 40. Gautier, D.L., Pitman, J.K., Charpentier, R.R., Cook, T., Klett, T.R., Schenk, Ch.J., 2012. Potential for Technically Recoverable Unconventional Gas and Oil Resources in the Polish-Ukrainian Foredeep, Poland, 2012. U.S. Department of the Interior, U.S. Geological Survey, Fact Sheet 2012-3102.
  • 41. Gale, J.F.W., Holder, J., 2010. Natural fractures in some US shales and their importance for gas production. Geological Society, London, Petroleum Geology Conference Proceedings, 7: 1131-1140.
  • 42. Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A., 2014. Natural fractures in shale: a review and new observations. AAPG Bulletin, 98: 2165-2216.
  • 43. Gras, R., Clayton, C.J., 1998. Non-hydrocarbon components of Carboniferous-sourced gas in the Southern Permian Basin, northwest Europe. Petroleum Geoscience, 4: 147-156.
  • 44. Greiling, R.O., Jensen, S., Smith, A.G., 1999. Vendian-Cambrian subsidence of the passive margin of western Baltica - application of new stratigraphic data from the Scandinavian Caledonian margin. Norsk Geologisk Tidsskrift, 77: 133-144.
  • 45. Grotek, I., 1999. Origin and thermal maturity of the organic matter in the Lower Palaeozoic rocks of the Pomeranian Caledonides and their foreland (northern Poland). Geological Quarterly, 43 (3): 297-312.
  • 46. Grotek, I., 2005. Alteration of the coalification degree of the organic matter dispersed in the Carboniferous sediments along border of the East-European Craton in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 413: 5-80.
  • 47. Grotek, I., 2006. Thermal maturity of organic matter from the sedimentary cover deposits from Pomeranian part of the TESZ, Baltic Basin and adjacent area (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 253-270.
  • 48. Grotek, I., 2016. A petrologic study and thermal maturity of organic matter from the Cambrian, Ordovician and Silurian deposits in the Baltic and Podlasie-Lublin areas (in Polish with English summary). Przegląd Geologiczny, 64: 1000-1004.
  • 49. Hackley, P.C., Cardott, B.J., 2016. Application of organic petrography in North American shale petroleum systems: a review. International Journal of Coal Geology, 163: 8-51.
  • 50. Haq, B.U., Schutter, S.R., 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64-68.
  • 51. Hill, R.J., Zhang, E., Katz, B.J., Tang, Y., 2007. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 91: 501-521.
  • 52. IEA, 2015. World Energy Outlook. International Energy Agency, Paris.
  • 53. IEA, 2019. United States, 2019 Review. International Energy Agency, Paris.
  • 54. Jacyna, J., Lauritzen, O., Zdanaviciute, O., Sliaupa, S., Nasedkin, V., 1997. Lithuania - Petroleum Potential and Exploration Opportunities. Lithuanian Geological Survey, Vilnius.
  • 55. Jarosiński, M., Poprawa, P., Ziegler, P.A., 2009. Cenozoic dynamic evolution of the Polish Platform. Geological Quarterly, 53 (1): 3-26.
  • 56. Jarzyna, J.A., Bała, M., Krakowska, P.I., Puskarczyk, E., Strzępowicz, A., Wawrzyniak-Guz, K., Więcław, D., Ziętek, J., 2017. Shale Gas in Poland. In: Advances in Natural Gas Emerging Technologies (eds. H. Al-Megren and R. Altamimi): 191-209. Intech.
  • 57. Jarvie, D.M., 2012a. Shale resource systems for oil and gas: part 1-shale-gas resource systems. AAPG Memoir, 97: 69-87.
  • 58. Jarvie, D.M., 2012b. Shale resource systems for oil and gas: Part 2 — Shale-oil Resource Systems. AAPG Memoir, 97: 89-119.
  • 59. Jarvie, D.M., 2016. Perspectives on shale resource plays, Chapter 11. In: The Role of Organic Petrology in the Exploration of Conventional and Unconventional Hydrocarbon Systems (eds. I. Suarez-Ruiz and J.G. Medonca Filho): 321-348. Bentham Science Publishers.
  • 60. Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M., 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91: 475-499.
  • 61. Kaczmarek, Ł., Łukasiak, D., Maksimczuk, M., Wejrzanowski, T., 2015. The use of high-resolution X-ray computed microtomography and ultrasonic analysis for structure characterization of Paleozoic gas-bearing shales of the Baltic Basin (in Polish with English summary). Nafta-Gaz, 71: 1017-1023.
  • 62. Kadūnienė, E., 2001. Organic matter in the oil source rocks. In: Petroleum Geology of Lithuania and Southeastern Baltic (eds. O. Zdanavičiūtė and K. Sakalauskas): 96-118. Institute of Geology, Vilnius.
  • 63. Kaminskas, D., Michelevičius, D., Blažauskas, N., 2015. New evidence of an early Pridoli barrier reef in the southern part of the Baltic Silurian basin based on three-dimensional seismic survey, Lithuania. Estonian Journal of Earth Sciences, 64: 47-55.
  • 64. Kanev, S., Margulis, L., Bojesen-Koefoed, J.A., Weil, W.A., Merta, H., Zdanavičiūtė, O., 1994. Oils and hydrocarbon source rocks of the Baltic syneclise. Oil and Gas Journal, 92: 69-73.
  • 65. Karcz, P., Janas, M., 2016. Organic matter in Cambrian, Ordovician and Silurian shales of the Baltic-Podlasie-Lublin Basin in Poland (in Polish with English summary). Przegląd Geologiczny, 64: 995-999.
  • 66. Karnkowski, P., 1999. Oil and gas deposits in Poland. The Geosynoptics Society, GEOS AGH, Cracow.
  • 67. Karnkowski, P.H., 1997. Sedimentary basins and petroleum provinces in Poland: an overview (in Polish with English summary). Przegląd Geologiczny, 45: 989-995.
  • 68. Karnkowski, P.H., Pikulski, L., Wolnowski, T., 2010. Petroleum geology of the Polish part of the Baltic region - an overview. Geological Quarterly, 54 (2): 143-158.
  • 69. Kiersnowski, H., 2013. Geological environment of gas-bearing shales. In: Shale Gas as Seen by Polish Geological Survey (ed. J. Nawrocki): 26-31. Polish Geological Institute - National Research Institute, Warszawa.
  • 70. Kiersnowski, H., Dyrka, I., 2013. Ordovician-Silurian shale gas resources potential in Poland: evaluation of Gas Resources Assessment Reports published to date and expected improvements for 2014 forthcoming Assessment. Przegląd Geologiczny, 61: 639-656.
  • 71. Klimuszko, E., 2002. Silurian of the south-eastern Poland as a potential source rock for Devonian oil (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 402: 75-100.
  • 72. Kosakowski, P., Wróbel, M., Poprawa, P., 2010. Hydrocarbon generation and expulsion modelling of the Lower Palaeozoic source rocks in the Polish part of the Baltic Basin. Geological Quarterly, 54 (2): 241-256.
  • 73. Kosakowski, P., Kotarba, M.J., Piestrzyński, A., Shogenova, A., Więcław, D., 2016. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland). International Journal of Earth Sciences, 106: 743-761.
  • 74. Kotarba, M.J., Więcław, D., Kosakowski, P., Wróbel, M., Matyszkiewicz, J., Buła, Z., Krajewski, M., Koltun, Y.V., Tarkowski, J., 2011. Petroleum systems in the Palaeozoic-Mesozoic basement of the Polish and Ukrainian parts of the Carpathian Foredeep. Annales Societatis Geologorum Poloniae, 81: 487-522.
  • 75. Krakowska, P.I., Jarzyna, J.A., Wawrzyniak-Guz, K., Puskarczyk, E., Zych, M., 2016. Heterogeneity analysis of the Polish shale gas formations based on results of laboratory measurements. In: International Multidisciplinary Scientific Geo-Conference SGEM, SGEM2017, STEF92 Technology Ltd.
  • 76. Krzemińska, E., 2005. The outline of geochemical features of the Late Neoproterozoic volcanic activity in the Lublin-Podlasie basin, eastern Poland. Mineralogical Society of Poland, Special Papers, 26: 47-51.
  • 77. Krzywiec, P., 2011. Interpretacja tektoniczna profili sejsmicznych w rejonie otworu wiertniczego Darżlubie IG 1 (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 128: 151-153.
  • 78. Krzywiec, P., 2012. Interpretacja tektoniczna profilu sejsmicznego WO060189 (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 136: 108-109.
  • 79. Krzywiec, P., Malinowski, M., Lis, P., Buffenmyer, V., Lewandowski, M., 2014. Lower Palaeozoic Basins Developed Above the East European Craton in Poland: New Insight from Regional High-Effort Seismic Reflection Data. SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna (extended abstract), Book of Abstracts, SPE-167739-MS.
  • 80. Krzywiec, P., Gągała, Ł., Mazur, S., Słonka, Ł., Kufrasa, M., Malinowski, M., Pietsch, K., Golonka, J., 2017. Variscan deformation along the Teisseyre-Tornquist Zone in SE Poland: thick-skinned structural inheritance or thin-skinned thrusting? Tectonophysics, 718: 83-91.
  • 81. Krzywiec, P., Poprawa, P., Mikołajczak, M., Mazur, S., Malinowski, M., 2018. Deeply concealed half-graben at the SW margin of the East European Craton (SE Poland) - evidence for Neoproterozoic rifting prior to the break-up of Rodinia. Journal of Palaeogeography, 7: 88-97.
  • 82. Kuuskraa, V.A., Stevens S.H., Moodhe, K.D., 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. U.S. Energy Information Administration, Washington.
  • 83. Lapinskas, P., 2000. Structure and petroliferosity of the Silurian in Lithuania. Institute of Geology, Vilnius.
  • 84. Lassen, A., Thybo, H., Berthelsen, A., 2001. Reflection seismic evidence for Caledonian deformed sediments above Sveconorwegian basement in the southwestern Baltic Sea. Tectonics, 20: 268-276.
  • 85. Lazauskienė, J., Stephenson, R., Šliaupa, S., Van Wees, J.-D., 2002. 3-D flexural modelling of the Silurian Baltic Basin. Tectonophysics, 346: 115-135.
  • 86. Lazauskienė, J., Sliaupa, S., Brazauskas, A., Musteikis, P., 2003. Sequence stratigraphy of the Baltic Silurian succession: tectonic control on the foreland infill. Geological Society Special Publications, 208: 95-115.
  • 87. Le, M.-T., 2018. An assessment of the potential for the development of the shale gas industry in countries outside of North America. Heliyon, Article No e00516. doi: 10.1016/j.heliyon.2018.e00516.
  • 88. Lehr, J.H., Keeley, J., 2016. Alternative Energy and Shale Gas Encyclopedia. Wiley Series on Energy, New Jersey.
  • 89. Levendal, T.C., Lehnert, O., Sopher, D., Erlström, M., Juhlin, C., 2019. Ordovician carbonate mud mounds of the Baltoscandian Basin in time and space - a geophysical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109345.
  • 90. Leventhal, J.S., 1981. Pyrolysis gas chromatography-mass spectrometry to characterize organic matter and its relationship to uranium content of Appalachian Devonian black shales. Geochimica et Cosmochimica Acta, 45: 883-889.
  • 91. Lewan, M.D., Buchardt, B., 1989. Irradiation of organic matter by uranium decay in the Alum Shale, Sweden. Geochimica et Cosmochimica Acta, 53: 1307-1322.
  • 92. Luening, S., Kolonic, S., 2003. Uranium spectral gamma-ray response as a proxy for organic richness in black shales: applicability and limitations. Journal of Petroleum Geology, 26: 153-174.
  • 93. Ma, L., Taylor, K.G., Dowey, P.J., Courtois, L., Gholinia, A., Lee, P.D., 2017. Multi-scale 3D characterisation of porosity and organic matter in shales with variable TOC content and thermal maturity: Examples from the Lublin and Baltic Basins, Poland and Lithuania. International Journal of Coal Geology, 180: 100-112.
  • 94. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M., Buffenmeyer, V., 2016. Pomeranian Caledonides, NW Poland - a collisional suture or thin skinned fold-and-thrust belt? Tectonophysics, 692: 29-43.
  • 95. Mazur, S., Porębski, S.J., Kędzior, A., Paszkowski, M., Podhalańska, T., Poprawa, P., 2018. Refined timing and kinematics for Baltica-Avalonia convergence based on the sedimentary record of a foreland basin. Terra Nova, 30: 8-16.
  • 96. McGlade, C., Speirs, J., Sorrell, S., 2013. Methods of estimating shale gas resources - comparison, evaluation and implications. Energy, 59: 116-125.
  • 97. McKerrow, W.S., Cocks, L.R.M., 1986. Oceans, islands arcs and olistostromes: the use of fossils in distinguishing sutures, terranes and environments around the lapetus Ocean. Journal of the Geological Society, 143: 185-191.
  • 98. Middleton, R.S., Gupta, R., Hyman, J.D., Viswanathan, H.S., 2017. The shale gas revolution: Barriers, sustainability, and emerging opportunities. Applied Energy, 199: 88-95.
  • 99. Mingram, B., Hoth, P., Lüders, V., Harlov, D., 2005. The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. International Journal of Earth Sciences, 94: 1010-1022.
  • 100. Modliński, Z., Szymański, B., 1997. The Ordovician lithostratigraphy of the Peribaltic Depression (NE Poland) (in Polish with English summary). Geological Quarterly, 41 (3): 273-288.
  • 101. Modliński, Z., Szymański, B., 2005. The Ordovician lithostratigraphy of the Biłgoraj-Narol zone (SE Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 416: 45-79.
  • 102. Modliński, Z., Szymański, B., 2008. The Ordovician lithostratigraphy of the Podlasie Depresssion and the Płock-Warsaw Trough (eastern Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 430: 79-112.
  • 103. Modliński, Z., Szymański, B., Teller, L., 2006. The Silurian lithostratigraphy of the Polish part of the Peri-Baltic Depression (N Poland) (in Polish with English summary). Przegląd Geologiczny, 54: 787-796.
  • 104. Modliński, Z. ed., Jaworowski, K., Miłaczewski, L., Pacześna, J., Podhalańska, T., Sikorska, M., Szymański, B., Waksmundzka, M.I., 2010. Paleogeological Atlas of the sub-Permian Paleozoic of the East European Craton in Poland and neighbouring areas, 1:2 000 000 (in Polish with English summary). Polish Geological Institute - NRI, Warsaw.
  • 105. Molenaar, N., Čyžienė, J., Šliaupa, S., 2007. Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones. Sedimentary Geology, 195: 135-159.
  • 106. NCPL, 2013. 3Legs resources resources - cracking the code to Poland's shale opportunity. Northland Capital Partners Limited, London.
  • 107. Niedbalec, S., Radecki, S., 2007. Hydrocarbon accumulations in Poland. Przegląd Geologiczny, 55: 985-991.
  • 108. Nielsen, A.T., Schovsbo, N.H., 2010. The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Science Reviews, 107: 207-310.
  • 109. Pacześna, J., 2006, Evolution of late Neoproterozoic rift depocentres and facies in the Lublin-Podlasie sedimentary basin (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 9-38.
  • 110. Pacześna, J., 2014. Lithostratigraphy of the Ediacaran deposits in the Lublin-Podlasie sedimentary basin (eastern and south-eastern Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 460: 1-24.
  • 111. Pacześna, J., Poprawa, P., Żywiecki, M., Grotek, I., Poniewierska, H., Wagner, M., 2005. The uppermost Ediacaran to lowermost Cambrian sediments of the Lublin-Podlasie Basin as a potential source rock formation for hydrocarbons (in Polish with English summary). Przegląd Geologiczny, 53: 499-506.
  • 112. Papiernik, B., Botor, D., Golonka, J., Pietsch, K., Cichostępski, K., Porębski, S.J., 2017. Strefy formowania i zachowania niekonwencjonalnych złóż węglowodorów w świetle analizy tektonicznej, sedymentologiczno-stratygraficznej i paleomiąższości (in Polish). In: Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów (eds. J. Golonka and S. Bębenek): 494-502. Wydawnictwo Arka, Cieszyn.
  • 113. Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R., Sinha, S., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir - Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. Society of Petroleum Engineers, SPE 131350.
  • 114. Paškevičius, J., 1997. The Geology of the Baltic Republics. Vilnius University, Geological Survey of Lithuania, Vilnius.
  • 115. Patzek, T., Male, F., Marder, M., 2014. A simple model of gas production from hydrofractured horizontal wells in shales. AAPG Bulletin, 98: 2507-2529.
  • 116. Peters, K.E., Cassa, M.R., 2002. Applied source rocks geochemistry. AAPG Memoir, 60: 93-121.
  • 117. PGI, 2012. Assessment of shale gas and shale oil resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in Poland. First report. Polish Geological Institute - National Research Institute, Warszawa.
  • 118. Podhalańska, T., 2009. The Late Ordovician Gondwana glaciation - a record of environmental changes in the depositional succession of the Baltic Depression (Northern Poland) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 193: 1-96.
  • 119. Podhalańska, T., 2017. Biostratygrafia ordowiku i syluru zachodniej części kratonu wschodnioeuropejskiego (in Polish). In: Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów (eds. J. Golonka and S. Bębenek): 116-143. Wydawnictwo Arka, Cieszyn.
  • 120. Podhalańska, T., Modliński, Z., 2006. Stratigraphy and facies characteristics of the Ordovician and Silurian deposits of the Koszalin-Chojnice Zone; similarities and differences to the western margin of the East European Craton and the Rügen area (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 39-78.
  • 121. Podhalańska, T., Waksmundzka, M.I., Becker, A., Roszkowska-Remin, J., 2016. Investigation of the prospective areas and stratigraphic horizons of the unconventional hydrocarbon resources in Poland - new results and future research directions (in Polish with English summary). Przegląd Geologiczny, 64: 953-962.
  • 122. Pollastro, R.M., Jarvie, D.M., Hill, R.J., Adams, C.W., 2007. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch - Fort Worth Basin, Texas. AAPG Bulletin, 91: 405-436.
  • 123. Pool, W., Geluk, M., Abels, J., Tiley, G., Idiz, E., Leenaarts, E., 2012. Assessment of an unusual European Shale Gas play: the Cambro-Ordovician Alum Shale, southern Sweden. Society of Petroleum Engineers, SPE-152339.
  • 124. Popescu, B.M., Anastasiu, N., 2016. An overview of unconventional resources of Romania. Pending Challenges. In: Shale Gas: Ecology, Politics, Economy (ed. S. Zhiltsov): 97-139. The Handbook of Environmental Chemistry, 52. Springer, Cham.
  • 125. Poprawa, P., 2006a. Neoproterozoic break-up of the supercontinent Rodiania/Pannotia recorded by development of sedimentary basins at the western slope of Baltika (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 165-188.
  • 126. Poprawa, P., 2006b. Development of the Caledonian collision zone along the western margin of Baltica and its relation to the foreland basin (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 189-214.
  • 127. Poprawa, P., 2010a. Shale gas potential of the Lower Palaeozoic complex in the Baltic Basin and Lublin-Podlasie Basin (Poland) (in Polish with English summary). Przegląd Geologiczny, 58: 226-249.
  • 128. Poprawa, P., 2010b. Analysis of shale gas potential of siltstone and mudstone formations in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 439: 159-172.
  • 129. Poprawa, P., 2019. Geological setting and Ediacaran-Paleozoic evolution of the western slope of the East European Craton and adjacent regions. Annales Societatis Geologorum Poloniae, 89: 347-380.
  • 130. Poprawa, P., Pacześna, J., 2002. Late Neoproterozoic to Early Paleozoic development of a rift at the Lublin-Podlasie slope of the East European Craton - analysis of subsidence and facies record (in Polish with English summary). Przegląd Geologiczny, 50: 49-61.
  • 131. Poprawa, P., Grotek, I., 2005. Revealing palaeo-heat flow and paleooverpressures in the Baltic Basin from thermal maturity modelling. Mineralogical Society of Poland, Special Papers, 26: 235-238.
  • 132. Poprawa, P., Kiersnowski, H., 2008. Potential for shale gas and tight gas exploration in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 429: 145-152.
  • 133. Poprawa, P., Żywiecki, M.M., 2005. Heat transfer during development of the Lublin Basin (SE Poland): maturity modelling and fluid inclusion analysis. Mineralogical Society of Poland, Special Papers, 26: 239-248.
  • 134. Poprawa, P., Šliaupa, S., Stephenson, R.A., Lazauskiene, J., 1999. Late Vendian-Early Palaeozoic tectonic evolution of the Baltic basin: regional implications from subsidence analysis. Tectonophysics, 314: 219-239.
  • 135. Poprawa, P., Šliaupa, S., Sidorov, V., 2006. Late Silurian to Early Devonian intra-plate compression in the foreland of Caledonian orogen (central part of the Baltic Basin) - analysis of seismic data (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 215-224.
  • 136. Poprawa, P., Kosakowski, P., Wróbel, M., 2010. Burial and thermal history of the western part of the Baltic Basin. Geological Quarterly, 54 (2): 131-142.
  • 137. Poprawa, P., Machowski, G., Maksym, A., Zacharski, J., Papiernik, B., Stefaniuk, M., Górecki, W., Zając, J., 2016. Shale gas potential of the Ordovician-Silurian complex in the Narol Zone (SE Poland). AAPG/SEG International Conference & Exhibition, Book of Abstracts, Cancun.
  • 138. Poprawa, P., Radkovets, N., Rauball, J., 2018a. Ediacaran-Paleozoic subsidence history of the Volyn-Podillya-Moldova basin (Western and SW Ukraine, Moldova, NE Romania). Geological Quarterly, 62 (3): 459-486.
  • 139. Poprawa, P., Papiernik, B., Krzywiec, P., Machowski, G., Maksym, A., 2018b. Exploration potential of the Polish petroleum provinces (in Polish with English summary). Wiadomości Naftowe i Gazownicze, 12: 4-12.
  • 140. Poprawa, P., Popescu, B., Tari, G., 2018c. The Lower Paleozoic oil/gas shale plays in the Central Europe. XXI Int. Congr. of the CBGA, Salzburg, Geologica Balcanica, Abstracts, 332.
  • 141. Poprawa, P., Krzemińska, E., Pacześna, J., Amstrong, R., 2020. Geochronology of the Volyn volcanic complex at the western slope of the East European Craton - relevance to the Neoproterozoic rifting and the break-up of Rodinia/Pannotia. Precambrian Research, 346: 105817.
  • 142. Porębski, Sz., Podhalańska, T., 2017. Lithostratigraphy of the Ordovician and Silurian. In: Opracowanie map zasięgu, biostratygrafia utworów dolnego paleozoiku oraz analiza ewolucji tektonicznej przykrawędziowej strefy platformy wschodnioeuropejskiej dla oceny rozmieszczenia niekonwencjonalnych złóż węglowodorów (eds. J. Golonka and S. Bębenek): 144-149. Wydawnictwo Arka, Cieszyn.
  • 143. Porębski, Sz., Podhalańska, T., 2019. Ordovician-Silurian lithostratigraphy of the East European Craton in Poland. Annales Societatis Geologorum Poloniae, 89: 95-104.
  • 144. Porębski, S.J., Prugar, W., Zacharski, J., 2013. Silurian shales of the East European Platform in Poland- some exploration problems. Przegląd Geologiczny, 61: 630-638.
  • 145. Porębski, S.J., Anczkiewicz, R., Paszkowski, M., Skompski, S., Kędzior, A., Mazur, S., Szczepański, J., Buniak, A., Mikołajewski, Z., 2019. Hirnantian icebergs in the subtropical shelf of Baltica: Evidence from sedimentology and detrital zircon provenance. Geology, 47: 1-5.
  • 146. PPI Energy and Chemicals Team, 2013. The effects of shale gas production on natural gas prices. Cornell University ILR School. Washington, DC: Bureau of Labor Statistics. Beyond the Numbers, 2 : 1-10.
  • 147. Prugar, W., 2013. Depositional environment and hydrocarbon habitat of the Lower Paleozoic deposits in the central and southern part of the Lublin Trough (in Polish with English summary). Ph.D. thesis, Library of AGH University of Sciences and Technology, Kraków.
  • 148. Puskarczyk, E., 2019. Artificial neural networks as a tool for pattern recognition and electrofacies analysis in Polish Palaeozoic shale gas formations. Acta Geophysica, 67: 1991-2003.
  • 149. Radkovets, N., 2015. The Silurian of southwestern margin of the East European Platform (Ukraine, Moldova and Romania): lithofacies and palaeoenvironments. Geological Quarterly, 59 (1): 105-118.
  • 150. Radkovets, N.Y., Rauball, J., Jaremchuk, I., 2017. Silurian black shales of Western Ukraine: petrography and mineralogy. Estonian Journal of Earth Sciences, 66: 161-173.
  • 151. Radkovets, N., Kosakowski, P., Rauball, J., Zakrzewski, A., 2018. Burial and thermal history modelling of the Ediacaran succession in Western and SW Ukraine and Moldova. Journal of Petroleum Geology, 41: 85-106.
  • 152. Rasmussen, B.W., Rasmussen, J.A., Nielsen, A.T., 2017. Biostratigraphy of the Furongian (upper Cambrian) Alum Shale Formation at Degerhamn, Öland, Sweden. GFF. http://dx.doi.org/10.1080/11035897.2016.1276099.
  • 153. Sachsenhofer, R.F., Koltun, Y.V., 2012. Black shales in Ukraine - a review. Marine and Petroleum Geology, 31: 125-136.
  • 154. Sakalauskas, K., 2001. Key features of the geologiacal setting. Tectonics: an overview of regional structure features. In: Petroleum Geology of Lithuania and Southeastern Baltic (eds. O. Zdanavičiūtė and K. Sakalauskas): 19-45. Institute of Geology, Vilnius.
  • 155. Sandrea, R., Sandrea, I., 2014. New well-productivity data provide US shale potential insights. Oil and Gas Journal, 112: 1-11.
  • 156. Schovsbo, N.H., 2002. Uranium enrichment shorewards in black shales: a case study from the Scandinavian Alum Shale. GFF, 124: 107-116.
  • 157. Schovsbo, N.H., Nielsen, A. T., Klitten, K., Mathiesen, A., Rasmussen, P., 2011. Shale gas investigations in Denmark: Lower Palaeozoic shales on Bornholm. Geological Survey of Denmark and Greenland Bulletin, 23: 9-12.
  • 158. Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix Volume.
  • 159. Schovsbo, N.H., Nielsen, A.T., Harstad, A.O., Bruton, D.L., 2018. Stratigraphy and geochemical composition of the Cambrian Alum Shale Formation in the Porsgrunn core, Skien-Langesund district, southern Norway. Bulletin of the Geological Society of Denmark, 66: 1-20.
  • 160. Semyrka, R., Jarzyna, J., Semyrka, G., Kazmierczuk, M., Pikulski, L., 2010. Reservoir parameters of lithostratigraphic successions of the lower Paleozoic strata in the Polish part of the Baltic region based on laboratory studies and well logs. Geological Quarterly, 54 (2): 227-240.
  • 161. Sikorska, M., 1998. The role of diagenesis in development of pore space of the Cambrian sandstones from the Polish part of the East European Platform (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 164: 1-66.
  • 162. Skręt, U., Fabiańska, M.J., 2009. Geochemical characteristics of organic matter in the Lower Palaeozoic rocks of the Peribaltic Syneclise (Poland). Geochemical Journal, 43: 343-369.
  • 163. Sliaupa, S., Fokin, P., Lazauskienė, J., Stephenson, R.A., 2006. The Vendian-Early Palaeozoic sedimentary basins of the East European Craton. Geological Society Memoirs, 32: 449-462.
  • 164. Sliaupa, S., Sliaupienė, R., Zalădienė, G., Vaskaboinikava, T., Bibikava, A., Evstratenko, L., Kovkhuto, A., 2016. Prospects of Lithuanian Silurian shale gas, Baltic Sedimentary Basin. Oil Shale, 33: 357-372.
  • 165. Słota-Valim, M., Sowiżdżał, K., Jędrzejowska-Tyczkowska, H., 2017. Geomechanical modeling of Paleozoic Shale Gas Formation: a case study from the Baltic Basin, northern Poland. Geology, Geophysics and Environment, 43: 249-269.
  • 166. Smith, J.L., Lee, T.K., 2017. The Price Elasticity of U.S. Shale Oil Reserves. U.S. Energy Information Administration, Working Paper Series, Washington.
  • 167. Sone, H., Zoback, M.D., 2013a. Mechanical properties of shale-gas reservoir rocks - part 1: Static and dynamic elastic properties and anisotropy. Geophysics, 78: D381-D392.
  • 168. Sone, H., Zoback, M.D., 2013b. Mechanical properties of shale-gas reservoir rocks - part 2: Ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics, 78: D393-D402.
  • 169. Song, W., Yao, J., Li, Y., Sun, H., Zhang, L., Yang, Y., Zhao, J., Sui, H., 2016. Apparent gas permeability in an organic-rich shale reservoir. Fuel, 181: 973-984.
  • 170. Sopher, D., Erlström, M., Bell, N., Juhlin, C., 2016. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: new insights from vintage 2D marine seismic data. Tectonophysics, 676: 90-111.
  • 171. Sowiżdżał, K., Stadtmüller, M., Lis-Śledziona, A., Kaczmarczyk, W., 2016. Comparative analysis of shale formations in selected areas of the Baltic Basin based on well data interpretation and 3D geological modelling (in Polish with English summary). Nafta-Gaz, 72: 891-900.
  • 172. Spaw, J.M., Hlava, K.S., 2014. Mudstone Lithofacies Evaluation for Play Fairway Analysis: characterization of the Paleozoic Shales of Poland. AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014, Search and Discovery Article #10674.
  • 173. Spirakis, C.S., 1996. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11: 53-69.
  • 174. Stolarczyk, F., Stolarczyk, J., Wysocka, H., Buchelt, M., 1997. Strefy perspektywiczne dla występowania węglowodorów w kambrze lubelsko-podlaskiej części starej platformy (in Polish). Przegląd Geologiczny, 45: 171-175.
  • 175. Stolarczyk, F., Stolarczyk, J., Wysocka, H., 2004. Primary areas for hydrocarbon prospecting in the Cambrian of the Polish part of the East European Platform (in Polish with English summary). Przegląd Geologiczny, 52: 403-412.
  • 176. Szymański, B., 2008. The Upper Cambrian and Tremadocian lithostratigraphic and microfacies record of the Baltic Depression (northern Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 430: 113-154.
  • 177. Tari, G., Poprawa, P., Krzywiec, P., Popescu, B., Micu, M., Krezsek, C., Rainer, T., 2016. Pro-foreland flexural basin interpretation of the Silurian Basin of Central and Eastern Europe: a review. AAPG Regional Conference, Bucharest, Abstract Book: 153-154, http://europeevents.aapg.org/Bucharest, 2016.
  • 178. Tella, T., 2011. Estimating Reserves for Unconventional Shale Resource Plays. Society of Petroleum Evaluation Engineers, Tulsa, https://spee.org/resources/past_presentations.
  • 179. Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Second Revised and Enlarged Edition, Springer, Berlin.
  • 180. Ulmishek, G.F., 1990. Geologic evolution and petroleum resources of the Baltic Basin. AAPG Memoir, 51: 603-632.
  • 181. Vejbæk, O.V., Stouge, S., Poulsen, K.D., 1994. Palaeozoic tectonic and sedimentary evolution and hydrocarbon prospectivity in the Bornholm area. Danmarks Geologiske Undersrgelse, Serie A, 34: 1-23.
  • 182. Wagner, R., 1994. Stratigraphy and development of the Zechstein basin in the Polish Lowlands (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 146: 1-71.
  • 183. Wang, Z., Krupnick, A., 2015. A retrospective review of shale gas development in the United States: what led to the boom? Economics of Energy and Environmental Policy, 4: 5-18.
  • 184. Wang, H., Ma, F., Tong, X., Liu, Z., Zhang, X., Wu, Z., Li, D., Wang, B., Xie, Y., Yang, L., 2016. Assessment of global unconventional oil and gas resources. Petroleum Exploration and Development, 43: 925-940.
  • 185. Wawrzyniak-Guz, K., 2019. Rock physics modelling for determination of effective elastic properties of the lower Paleozoic shale formation, North Poland. Acta Geophysica, 67: 1967-1989.
  • 186. Whitelaw, P., Uguna, C.N., Stevens, L.A., Meredith, W., Snape C.E., Vane, C.H., Moss-Hayes, V., Carr, A.D., 2019. Shale gas reserve evaluation by laboratory pyrolysis and gas holding capacity consistent with field data. Nature Communications, 10: 3659.
  • 187. Więcław, D., Kotarba, M., Kosakowski, P., Kowalski, A., Grotek, I., 2010. Habitat and hydrocarbon potential of the Lower Palaeozoic source rocks of the Polish sector of the Baltic Sea. Geological Quarterly, 54 (2): 159-182.
  • 188. Wójcicki, A., 2015. Assessment of unconventional gas resources in Poland (in Polish with English summary). Przegląd Geologiczny, 63: 1215-1219.
  • 189. Wójcicki, A., Kiersnowski, H., Dyrka, I., Adamczak-Biały, T., Becker, A., Głuszyński, A., Janas, M., Kozłowska, A., Krzemiński, L., Kuberska, M., Pacześna, J., Podhalańska, T., Roman, M., Skowroński, L., Waksmundzka, M.I., 2014. Prognostyczne zasoby gazu ziemnego w wybranych zwięzłych skałach zbiornikowych Polski (in Polish). Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa.
  • 190. Yang, S., Schulz, H.-M., Schovsbo, N., Bojesen-Koefoed, J.A., 2017. Oil-source-rock correlation of the Lower Paleozoic petroleum system in the Baltic Basin (northern Europe). AAPG Bulletin, 101: 1971-1993.
  • 191. Zacharski, J., 2015. Geological setting and reservoir heterogeneity of Lower Paleozoic shales in the Lublin Basin (Poland) and its impact on exploration. AAPG European Regional Conference and Exhibition, Lisbon, Book of abstracts. http://www.searchanddiscovery.com/abstracts/html/2015/90226erm/abstracts/10494187.html.
  • 192. Zdanavičiūtė, O., Bojesen-Koefoed, J.A., 1997. Geochemistry of Lithuanian oils and source rocks: a preliminary assessment. Journal of Petroleum Geology, 20: 381-402.
  • 193. Zdanaviciute, O., Lazauskiene, J., 2007. The petroleum potential of the Silurian succession in Lithuania. Journal of Petroleum Geology, 30: 325-337.
  • 194. Zdanavičiūtė, O., Lazauskienė, J., 2009. Organic matter of Early Silurian succession - the potential source of unconventional gas in the Baltic Basin (Lithuania). Baltica, 22: 89-98.
  • 195. Zdanavičiūtė, O., Swadowska, E., 2002. Petrographic and pyrolysis-gas chromatography investigations of the Lower Palaeozoic organic matter of Lithuania. Geologija, 40: 15-22.
  • 196. Zdanavičiūtė, O., Khubldikov, A.I., Bojesen-Koefoed, J.A., 1998. Geology and Oil Geochemistry of the Eastern Part of the Baltic Syneclise. In: Perspective of Petroleum Exploration in the Baltic Region (eds. P. Suveizdis and O. Zdanavičiūtė): 58-65. Proceedings of the International Conference. Institute of Geology, Vilnius.
  • 197. Zijp, M.H.A.A., Nelskamp, S., Doornenbal, J.C., 2017. Resource estimation of shale gas and shale oil in Europe. Report T7b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by European Commission Joint Research Centre to GEUS, Brussels.
  • 198. Zoback, M.D., Kohli, A.H., 2019. Unconventional Reservoir Geomechanics. Shale Gas, Tight Oil, and Induced Seismicity. Cambridge University Press, Cambridge.
  • 199. Zou, C., Zhu, R., Tao, S., Hou, L., Yuan, X., Song, Y., Niu, J., Dong, D., Liu, S., Jiang, L., Wang, S., Zhang, G., 2013. Unconventional Petroleum Geology. Petroleum Industry Press, Elsevier Inc., http://dx.doi.org/10.1016/B978-0-12-397162-3.00001-3.
  • 200. Żelichowski, A.M., Porzycki, J., 1983. Geological and structural map without Carboniferous and younger strata (in Polish with English summary). In: Atlas of Geological Structure and Mineral Deposits in the Lublin Basin (eds. A.M. Żelichowski and S. Kozłowski). Wyd. Geol., Warszawa.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46da10bf-60d5-42c3-ad4c-8266fb19207a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.