Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigated the environmental performance of Nephrolepis as a natural nitrate accumulator in small-holder oil palm ecosystems through a life cycle assessment approach. The research was conducted in Surya Indah Village, Pelalawan-Riau Regency, from January to May 2024, comparing natural (T1) and enhanced (T2) treatments across three blocks. Results demonstrated that enhanced treatment significantly improved Nephrolepis biomass production (389.8 g/m 2 compared to 305.3 g/m 2 in natural conditions) and nitrogen accumulation capacity (2.58% in fronds under enhanced conditions versus 2.34% in natural conditions). Soil analysis revealed that Nephrolepis cultivation effectively reduced nitrate leaching, with enhanced treatment showing the lowest soil nitrate concentrations (8.2 mg/kg in topsoil) compared to cleared treatments (18.6 mg/kg). Life cycle impact assessment indicated that enhanced management practices resulted in lower environmental impacts across all categories, with reduced global warming potential (382.4 kg CO 2 eq/ha/year), eutrophication potential (2.68 kg PO 4 eq/ha/year), and water depletion (228.4 m3/ha/year). These findings suggest that integrating Nephrolepis into smallholder oil palm systems, particularly under enhanced management practices, offers a promising approach for improving nutrient management while reducing environmental impacts in oil palm ecosystems.
Czasopismo
Rocznik
Tom
Strony
291--300
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Environmental Sciences, Riau Universitas, Pekanbaru City, Riau, Indonesia
- Indonesian Palm Oil Smallholders’ Association, Jakarta, Indonesia
autor
- Teaching Staff of Environmental Sciences, Postgraduate Program, Riau Universitas, Pekanbaru City, Indonesia
autor
- Teaching Staff of Environmental Sciences, Postgraduate Program, Riau Universitas, Pekanbaru City, Indonesia
autor
- Teaching Staff of Environmental Sciences, Postgraduate Program, Riau Universitas, Pekanbaru City, Indonesia
Bibliografia
- 1. Khatun, R., Reza, M. I. H., Moniruzzaman, M., Yaakob, Z. 2017. Sustainable oil palm industry: The possibilities. Renewable and Sustainable Energy Reviews, 76, 608–619. https://doi.org/10.1016/j.rser.2017.03.077
- 2. Murphy, D. J., Goggin, K., Paterson, R. R. M. 2021. Oil palm in the 2020s and beyond: challenges and solutions. CABI agriculture and bioscience, 2, 1–22. https://doi.org/10.1186/s43170-021-00058-3
- 3. Beeson Jr, R. C., Kjelgren, R., Chen, J. 2020. Daily water requirement of container grown Davallia bullata and Nephrolepis exaltata and implication in irrigation practices. Water, 12(8), 2190. https://doi.org/10.3390/w12082190
- 4. Kachenko, A. G., Singh, B., Bhatia, N. P. 2007. Heavy metal tolerance in common fern species. Australian Journal of Botany, 55(1), 63-73.
- 5. Li, K. S., Zeghbroeck J, V., Liu, Q., Zhang, S. 2021. Isolating and characterizing phosphorus solubilizing bacteria from rhizospheres of native plants grown in calcareous soils. Frontiers in Environmental Science, 9, 802563. https://doi.org/10.3389/fenvs.2021.802563
- 6. Ali, A., Niu, G., Masabni, J., Ferrante, A., Cocetta, G. 2024. Integrated nutrient management of fruits, vegetables, and crops through the use of biostimulants, soilless cultivation, and traditional and modern approaches—A mini review. Agriculture, 14(8), 1330. https://doi.org/10.3390/agriculture14081330
- 7. Rahman, M. H. A., Sharaai, A. H., Ponrahono, Z., Ab Rahim, N. N. R. N., Bakar, N. A. A., Hanifah, N. A. S., Shafawi, N. A. 2024. Systematic literature review on the application of the life cycle sustainability assessment in agricultural production. Journal of Sustainability Research, 6(4).
- 8. Thomas, G. V., Krishnakumar, V. 2024. Plantation crops and soil health management: An overview. Soil Health Management for Plantation Crops: Recent Advances and New Paradigms, 1–36. https://doi.org/10.1007/978-981-97-0092-9_11
- 9. Duret, M., Wallner, A., Buée, M., Aziz, A. 2024. Rhizosphere microbiome assembly, drivers and functions in perennial ligneous plant health. Microbiological Research, 127860. https://doi.org/10.1016/j.micres.2024.127860
- 10. Uttran, A., Loh, S. K., Ahmad, M., Bachman, R. T. 2023. Soil nutrient and management in oil palm plantations and agronomic potential of biochar. In Materials and Technologies for Future Advancement (pp. 167-188). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38993-1_17
- 11. Martinez-Baron, D., Alarcón de Antón, M., Martinez Salgado, J. D., Castellanos, A. E. 2024. Climate-smart agriculture reduces capital-based livelihoods vulnerability: evidence from Latin America. Frontiers in Sustainable Food Systems, 8, 1363101. https://doi.org/10.3389/fsufs.2024.1363101
- 12. Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., Mommer, L. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
- 13. Anderson, O. R. 2024. An ecophysiological study of cultivated Nephrolepis exaltata (L.) Schott cv. Bostoniensis (Boston Fern).
- 14. d’Aquino, L., Staiano, M., Gambale, E., Basile, A., Tommasi, F. 2018. Uptake and distribution of several inorganic ions in Nephrolepis cordifolia (L.) C. Presl grown on contaminated soil. Plant Biosystems. An International Journal Dealing with all Aspects of Plant Biology, 152(1), 59-69. https://doi.org/10. 1080/11263504.2016.1245217
- 15. Guo, W., Song, Y. B., Yu, F. H. 2011. Heterogeneous light supply affects growth and biomass allocation of the understory fern Diplopterygium glaucum at high patch contrast. PloS One, 6(11), e27998. https://doi.org/10.1007/s11104-015-2484-7
- 16. Conversa, G., Lazzizera, C., Chiaravalle, A. E., Miedico, O., Bonasia, A., La Rotonda, P., & Elia, A. 2019. Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Scientia Horticulturae, 252, 17–191. https://doi.org/10.1016/j.scienta.2019.03.056
- 17. Brady, N. C., Weil, R. R., Weil, R. R. 2008. The nature and properties of soils. 3, 662–710. Upper Saddle River, NJ: Prentice Hall.
- 18. Jobbagy, E. G., Jackson, R. B. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry, 53, 51–77.
- 19. Robertson, G. P., Groffman, P. M. 2024. Nitrogen transformations. In: Soil microbiology, ecology and biochemistry (407-438). Elsevier. https://doi.org/10.1016/B978-0-12-822941-5.00014-4
- 20. Booth, M. S., Stark, J. M., Rastetter, E. 2005. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75(2), 139–157. https://doi.org/10.1890/04-0988
- 21. Okorogbona, A. O., Denner, F. D., Managa, L. R., Khosa, T. B., Maduwa, K., Adebola, P. O., Macevele, S. 2018. Water quality impacts on agricultural productivity and environment. Sustainable Agriculture Reviews, 27, 1–35. https://doi.org/10.1007/978-3-319-75190-0_1
- 22. Yira, Y., Diekkrüger, B., Steup, G., Bossa, A. Y. 2016. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). Journal of Hydrology, 537, 187-199. https://doi.org/10.1016/j.jhydrol.2016.03.052
- 23. Roger-Estrade, J., Anger, C., Bertrand, M., Richard, G. 2010. Tillage and soil ecology: partners for sustainable agriculture. Soil and Tillage Research, 111(1), 33–40. https://doi.org/10.1016/j.still.2010.08.010
- 24. Campbell, G. S., Norman, J. M. 2000. An introduction to environmental biophysics. Springer Science & Business Media.
- 25. Valipour, M. 2015. Future of agricultural water management in Africa. Archives of Agronomy and Soil Science, 61(7), 907–927.
- 26. Martinez-Rodriguez, A., Macedo-Raygoza, G., Huerta-Robles, A. X., Reyes-Sepulveda, I., Lozano-Lopez, J., García-Ochoa, E. Y., Beltran-Garcia, M. J. 2019. Agave seed endophytes: ecology and impacts on root architecture, nutrient acquisition, and cold stress tolerance. Seed Endophytes: Biology and Biotechnology, 139–170. https://doi.org/10.1007/978-3-030-10504-4_8
- 27. Nabayi, A., Boon Sung Teh, C., Tan, N. P., Tan, A. K. Z. 2023. Nutrient leaching losses from continuous application of washed rice water on three contrasting soil textures. Pertanika Journal of Science & Technology, 31(4). https://doi.org/10.47836/pjst.31.4.20
- 28. Wang, Z. H., Li, S. X. 2019. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Advances in Agronomy, 156, 159-217. https://doi.org/10.1016/bs.agron.2019.01.007
- 29. Wang, Q., Wang, J., Huang, X., Liu, Z., Jin, W., Hu, W., Zhou, Z. 2024. Phosphorus application under continuous wheat-cotton straw retention enhanced cotton root productivity and seedcotton yield by improving the carbohydrate metabolism of root. Field Crops Research, 317, 109541. https://doi.org/10.1016/j.fcr.2024.109541
- 30. Thenappan, D. P., Thompson, D., Joshi, M., Mishra, A. K., & Joshi, V. (2024). Unraveling the spatio-temporal dynamics of soil and root-associated microbiomes in Texas olive orchards. Scientific Reports, 14(1), 18214. https://doi.org/10.1038/s41598-024-68209-w
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46d201f8-b2c6-438d-8931-35a538b8a156
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.