PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2,3-dihydro-quinazolin-4(1H)-one as a fluorescent sensor for Hg2+ ion and its docking studies in cancer treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 2,3-dihydro-quinazolin-4(1H)-one was synthesised via the deployment of SBA-Pr-SO3H and its application was explored as a highly selective fluorescent sensor for Hg2+ ion; fluorescence intensity was decreased selectively by Hg2+ ions. Furthermore, this compound also indicated for its superb anti-interference ability among other ions. It is important to mention that this compound could be employed to detect a very low amount of Hg2+ ions, which are highly toxic and general contaminants. The docking study shows that the molecule, 2,3-dihydro-quinazolin-4(1H)-one, is a good inhibitor for the 5ACC enzyme.
Rocznik
Strony
25--33
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
  • Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran; P.O. Box: 1993893973, phone/fax +98 2186613937
  • Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran; P.O. Box: 1993893973, phone/fax +98 2186613937
  • Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran; P.O. Box: 1993893973, phone/fax +98 2186613937
  • School of Chemistry, College of Science, University of Tehran, Tehran, Iran
  • Department of Chemistry, Dr. D. Y. Patil ACS Women’s College Pimpri Pune-411018; Affiliation to Savitribai Phule Pune University, Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
  • Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu, Olomouc, Czech Republic
Bibliografia
  • [1] Li X, Tu Y, Tang L, Gao Q, Alonso PL. The role of research in China’s successful elimination of malaria. Nat Med. 2022;28:1336-8. DOI: 10.1038/s41591-022-01824-0.
  • [2] Mhaske SB, Argade NP. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron. 2006;62:9787-826. DOI: 10.1016/j.tet.2006.07.098.
  • [3] Wang Y, Gao H, Gong C, Rizvi SFA, Liu X, Shi X, et al. N-quaternization of heterocyclic compound extended the emission to NIR with large Stokes shift and its application in constructing fluorescent probe. Spectrochim Acta, Part A. 2022;267:120566. DOI: 10.1016/j.saa.2021.120566.
  • [4] Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020;10:41353-92. DOI: 10.1039/D0RA06642G.
  • [5] Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, Nakanishi Y, et al. 6-alkylamino-and 2, 3-dihydro-3’-methoxy-2-phenyl-4-quinazolinones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 2000;43:4479-87. DOI: 10.1021/jm000151c.
  • [6] Spasov A, Ozerov A, Vassiliev P, Kosolapov V, Gurova N, Kucheryavenko A, et al. Synthesis and multifaceted pharmacological activity of novel quinazoline NHE-1 inhibitors. Sci Rep. 2021;11:24380. DOI: 10.1038/s41598-021-03722-w.
  • [7] Cheke RS, Shinde SD, Ambhore JP, Chaudhari SR, Bari SB. Quinazoline: An update on current status against convulsions. J Mol Struct. 2022;1248:131384. DOI: 10.1016/j.molstruc.2021.131384.
  • [8] Mohajer F, Mohammadi Ziarani G, Badiei A. New advances on modulating nanomagnetic cores as the MRI-monitored drug release in cancer. J Appl Organomet Chem. 2021;1:143-7. DOI: 10.22034/jaoc.2021.301405.1032.
  • [9] Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnol. 2022;20:1-29. DOI: 10.1186/s12951-022-01472-z.
  • [10] Yoo CL, Fettinger JC, Kurth MJ. Stannous chloride in alcohol: a one-pot conversion of 2-nitro-N-arylbenzamides to 2, 3-dihydro-1 H-quinazoline-4-ones. J Org Chem. 2005;70:6941-3. DOI: 10.1021/jo050450f.
  • [11] Chen J, Su W, Wu H, Liu M, Jin C. Eco-friendly synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones in ionic liquids or ionic liquid-water without additional catalyst. Green Chem. 2007;9:972-5. DOI: 10.1039/B700957G.
  • [12] Prakash M, Kesavan V. Highly enantioselective synthesis of 2, 3-dihydroquinazolinones through intramolecular amidation of imines. Org Lett. 2012;14:1896-9. DOI: 10.1021/ol300518m.
  • [13] Narasimhulu M, Lee YR. Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives. Tetrahedron. 2011;67:9627-34. DOI: 10.1016/j.tet.2011.08.018.
  • [14] Dabiri M, Salehi P, Otokesh S, Baghbanzadeh M, Kozehgary G, Mohammadi AA. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl (SO4) 2 · 12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett. 2005;46:6123-6. DOI: 10.1016/j.tetlet.2005.06.157.
  • [15] Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S. Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in water and under solvent-free conditions. Catal Commun. 2008;9:785-8. DOI: 10.1016/j.catcom.2007.08.019.
  • [16] Aduroja O, Abiye I, Fathima A, Tadesse S, Ozturk B, Wachira J, et al. Microwave-assisted synthesis for a highly selective rhodamine 6G-derived fluorescent sensor and bioimaging. Inorg Chem Commun. 2023;147:110236. DOI: 10.1016/j.inoche.2022.110236.
  • [17] Czarnik AW. Fluorescent chemosensors for ion and molecule recognition: ACS Symposium Series. Washington, DC: Am Chem Soc; 1993. DOI: 10.1021/BK-1993-0538.
  • [18] Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46:7105-23. DOI: 10.1039/C7CS00240H.
  • [19] Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 2003;18:149-75. DOI: 10.1002/tox.10116.
  • [20] Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:125586. DOI: 10.1016/j.chemosphere.2019.125586.
  • [21] Natasha, Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, et al. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci Total Environ. 2020;711:134749. DOI: 10.1016/j.scitotenv.2019.134749.
  • [22] Raj D, Maiti SK. Sources, toxicity, and remediation of mercury: an essence review. Environ Monit Assess. 2019;191:566. DOI: 10.1007/s10661-019-7743-2.
  • [23] Tseng CM, Hammerschmidt CR, Fitzgerald WF. Determination of methylmercury in environmental matrixes by on-line flow injection and atomic fluorescence spectrometry. Anal Chem. 2004;76:7131-6. DOI: 10.1021/ac049118e.
  • [24] Geddes CD, Lakowicz JR, Techert S. Current Developments of Fluorescence Spectroscopy. New York: Springer; 2005. DOI: 10.1007/b101259.
  • [25] Harsha KG, Appalanaidu E, Chereddy NR, Baggi TR, Rao VJ. Pyrene tethered imidazole derivative for the qualitative and quantitative detection of mercury present in various matrices. Sens Actuators B: Chem. 2018;256:528-34. DOI: 10.1016/j.snb.2017.10.120.
  • [26] Mukesh B, Rakesh K. Molecular docking: a review. Int J Res Ayurveda Pharm. 2011;2:1746-51.
  • [27] Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7:83-9. DOI: 10.1007/s40484-019-0172-y.
  • [28] Agarwal S, Mehrotra R. An overview of molecular docking. JSM Chem. 2016;4:1024-8.
  • [29] Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, et al. Emerging promise of computational techniques in anti-cancer research: at a glance. Bioengineering. 2022;9:335. DOI: 10.3390/bioengineering9080335.
  • [30] Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des. 2014;20:23-36. DOI: 10.2174/13816128113199990470.
  • [31] Mohammadi Ziarani G, Akhgar M, Mohajer F, Badiei A, Luque R. SBA-Pr-Is-TAP functionalized nanostructured silica as a highly selective fluorescent chemosensor for Fe3+ and Cr2O72− ions in aqueous media. Nanomaterials. 2021;11:2533. DOI: 10.3390/nano11102533.
  • [32] Mohammadi Ziarani G, Akhgar M, Mohajer F, Badiei A. SBA-Pr-IS-MN synthesis and its application as Ag+ optical sensor in aqueous media. Res Chem Intermed. 2021;47:2845-55. DOI: 10.1007/s11164-021-04431-9.
  • [33] Mohammadi Ziarani G, Ebrahimi Z, Mohajer F, Badiei A. A fluorescent chemosensor based on functionalized nanoporous silica (SBA-15 SBA-IC-MN) for detection of Hg2+ in aqueous media. Arab J Sci Eng. 2021;47:397-406. DOI: 10.1007/s13369-021-05518-6.
  • [34] Karimi M, Badiei A, Mohammadi Ziarani G. A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+ and I− in aqueous media. RSC Adv. 2015;5:36530-9. DOI: 10.1039/C5RA02692J.
  • [35] Mohammadi Ziarani G, Afsar SY, Gholamzadeh P, Badiei A. Synthesis of quinazolinone derivatives through multicomponent/click reactions. Org Chem Res. 2019;5:64-72. DOI: 10.22036/org.chem.2018.109157.1117.
  • [36] Ghodsi Mohammadi Z. Molecular docking and optical sensor studies based on 2,4-diamino pyrimidine-5-carbonitriles for detection of Hg2+. Environ Res. 2022;212:113245. DOI: 10.1016/j.envres.2022.113245.
  • [37] Gaikwad M, Gaikwad S, Kamble R. Synthesis of novel series of 1-(6-hydroxy-4-(1H-indol-3-yl)-3,6-dimethyl-4,5,6,7-tetrahydro-1H-indazol-5-yl)ethan-1-oneas. Evaluations of their antimicrobial activity with insilco docking study. J Med Chem Sci. 2022;5:239-48. DOI: 10.26655/JMCHEMSCI.2022.2.11.
  • [38] De Savi C, Bradbury RH, Rabow AA, Norman RA, de Almeida C, Andrews DM, et al. Optimazation of a novel binding motif to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J Med Chem. 2015;58:8128-40. DOI: 10.1021/acs.jmedchem.5b00984.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46d1c3ea-52bb-4b2d-85e0-52057dea45ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.