PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of force in MR fluids during oscillatory compression squeeze

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the behaviour of MR fluids in the oscillatory compression squeeze mode. Experiments were performed on commercially available MR fluids in the purpose-built experimental set-up. The influence of MR fluid’s properties and magnetic flux density on the force generated during the squeeze mode was investigated.
Słowa kluczowe
Rocznik
Strony
64--68
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics, Department Department of Machine Design and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics, Department Department of Machine Design and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Control, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Chaoyang G., Xinglong G., Shouhu X., Lijun Q., Qifan Y. (2013), Compression behaviors of magnetorheological fluids under nonuniform magnetic field, Rheologica Acta, 52(2), 165–176.
  • 2. Chen, Peng and Bai, Xian-Xu and Qian, Li-Jun (2016), Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling, Journal of Applied Physics, 119, 105101.
  • 3. Farjoud A., Cavey R., Ahmadian M., Craft M. (2009) Magnetorheological fluid behaviour in squeeze mode, Smart Materials and Structures, 18, 095001.
  • 4. Farjoud A., Craft M., Burke W., Ahmadian M. (2011), Experimental investigation of MR squeeze mounts, Journal of Intelligent Material Systems and Structures, 22, 1645–1652.
  • 5. Farjoud A., Vahdati N., Fah Y. (2008), MR-fluid yield surface determination in disc-type MR rotary brakes, Smart Materials and Structures, 17(3), 1-8.
  • 6. Gołdasz J., Sapiński B. (2015), Insight into Magnetorheological Shock Absorbers, Springer International Publishing, Switzerland.
  • 7. Horak W. (2013), Theoretical and experimental analysis of magnetorheological fluid squeeze flow, PhD Thesis (in Polish), AGH University of science and Technology, Krakow.
  • 8. Kim J. H. (2014), Damping force control filled with magnetorheological fluids and engine mount having the same, US Patent, No. US 8,672,105 B2.
  • 9. Kuzhir P., Lopez-Lopez M. T., Vertelov G., Pradille Ch., Bossis G. (2008), Oscillatory squeeze flow of suspensions of magnetic polymerized chains, Journal of Physics: Condensed Matter, 20(1), 1-5.
  • 10. López-López M.T, Kuzhir P., et al. (2011), Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses, Journal of Rheology, 54, 1119.
  • 11. Mazlan S. A., Ekreem, N.B., Olabi A.G., (2007) The performance of magnetorheological fluid in squeeze mode, Smart Mater. Struct.,16 1678–1682.
  • 12. Odenbach S., Pop L. M., Zubarev A. Yu. (2007), Rheological properties of magnetic fluids and their microstructural background, GAMM-Mitteilungen, 30(1), 195-204.
  • 13. Salwiński J., Horak W. (2012), Measurement of Normal Force in Magnetorheological and Ferrofluid Lubricated Bearings, Key Engineering Materials, 490, 25-32.
  • 14. Salwiński J., Horak W., Szczęch M. (2014), Experimental apparatus for examination of magnetic fluid lubricated thrust bearing, Scientific Papers of Silesian University of Technology, 83, 243-249.
  • 15. Sapiński B., Horak W. Sioma A. (2014), Experiments of MR fluid behaviour in the squeeze mode using the vision method, Control Conference (ICCC), 15th International Carpathian, Velke Karlovice, 513–516.
  • 16. Sapiński B., Horak W. Szczęch M. (2013), Investigation of MR fluids in the oscillatory squeeze mode, Acta Mechanica et Automatica, 7(2), 111-116.
  • 17. Sapiński B., Szczęch M. (2013), CFD model of a magnetorheological fluid in squeeze mode, Acta Mechanica et Automatica, 7(3), 180-183.
  • 18. Tao R. (2001), Super-strong magnetorheological fluids, Journal of Physics: Condensed Matter, 13(50), 979–999.
  • 19. Wang, D.H., Liao, W.H. (2011), Magnetorheological fluid dampers: a review of parametric modelling, Smart Mater. Struct., 20, 023001.
  • 20. Zubieta M., Eceolaza S., Elejabarrieta M.J., Bou-Ali M. M. (2009) Magnetorheological fluids: characterization and modeling of magnetization, Smart Mater. Struct., 18, 095019.
  • 21. BASF The Chemical Company, http://www.basonetic.com/.
  • 22. LORD Corporation, http://www.lord.com/.
Uwagi
1. Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
2. Acknowledgement: This work is supported by AGH University of Science and Technology under research program No. 11.11.130.958.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46d1b197-d298-4a3a-a9de-c1c097801717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.