PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of HFC-134a decomposition by combustion and its kinetic characteristics in a laboratory scale reactor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal decomposition of HFC-134a at 900–1000 K was investigated using a laboratory scale reactor. The experimental results indicate that the lower initial HFC-134a concentration and higher reaction temperature could enhance HFC-134a decomposition efficiency. Based on the results of measurements, it seems that the reaction order is around 1. Its activation energy (Ea) and the frequency factor (A) in the investigated temperature range are 300.5 kJ·mol–1 and 2.96×1014, respectively. The results demonstrate that 99.9% destruction efficiency could be achieved when HFC-134a/LPG is below 0.5 and the excess air ratio – above 0.6.
Rocznik
Strony
143--150
Opis fizyczny
Bibliogr. 11 poz., tab., rys.
Twórcy
autor
  • Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan, China
  • College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, China
autor
  • Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan, China
  • College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, China
autor
  • College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, China
autor
  • College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, China
Bibliografia
  • [1] PACHAURI R., REISINGER A., Climate Change 2007. Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 2007, On line at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_ synthesis_report.htm
  • [2] HU J., WAN D., LI C., ZHANG J., XU Y., Forecast of consumption and emission of HFC-134a used in the mobile air-conditioner sector in China, Adv. Climate Change Res., 2010, 1, 20.
  • [3] HE L., HAN J., WANG G., KIM H., YAO H., Characteristics of perfluoroethane thermal decomposition, Chem. J. Chinese U., 2009, 30, 125.
  • [4] DENG X., MA Z., YUE Y., GAO Z., Catalytic decomposition of CFC-12 over nanosized titania-supported titanyl sulfate, J. Catal., 2001, 204, 200.
  • [5] MA Z., HUA W., TANG Y., GAO Z., Catalytic decomposition of CFC-12 on solid acids 2 4 / x y SO  M O (M = Zr, Ti, Sn, Fe, Al), Chinese J. Chem., 2000, 18, 341.
  • [6] TAKITA Y., TANABE T., ITO M., OGURA M., MURAYA T., YASUDA S., NISHIGUCHI H., ISHIHARA T., Decomposition of CH2FCF3 (134a) over metal phosphate catalysts, Ind. Eng. Chem. Res., 2002, 41, 2585.
  • [7] ZHANG H., CHING N., LAI S., Catalytic decomposition of chlorodifluoromethane (HCFC-22) over platinum supported on TiO2–ZrO2 mixed oxides, Appl. Catal. B: Environ., 2005, 55, 301.
  • [8] FUTAMURA S., ANNADURAI G., Energy of nonthermal plasma and catalysts in the decomposition of fluorinated hydrocarbons, J. Electrostat., 2005, 63, 949.
  • [9] JASINSKI M., MIZERACZYK., ZAKRZEWSKI Z., OHKUBO T., CHANG J., CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge, J. Phys. D: Appl. Phys., 2002, 35, 2274.
  • [10] MOK Y., DEMIDYUK V., WHITEHEAD J., Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor, J. Phys. Chem. A, 2008, 112, 6586.
  • [11] XU X., CHOI M., KIM H., A strategy to protect Al2O3-based PFC decomposition catalyst from deactivation, Chem. Lett., 2005, 34, 364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46cde5fa-e522-42ef-9e23-e449db7346be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.