PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aminy biogenne w aspekcie ich roli w organizmach żywych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biogenic amines in their role in living systems
Języki publikacji
PL
Abstrakty
EN
Although polyamines (PA) belong to relatively simple aliphatic substances, their role in life processes of animals and plants is of key importance [1–5]. The group of the most important amines, called biogenic ones includes: Spermine (Spm): H2N(CH2)3NH(CH2)4NH(CH2)3NH2 Spermidine (Spd): H2N(CH2)3NH(CH2)4NH2 Putrescine (Put): H2N(CH2)4NH2. Of secondary importance are homologues of biogenic amines, occurring in lower contents in living organisms [2, 6–8]: 1,3-diaminopropan: H2N(CH2)3NH2 Cadaverine: H2N(CH2)5NH2 Homospermidine: H2N(CH2)4NH(CH2)4NH2 Norspermine (3,3,3-tet): H2N(CH2)3NH(CH2)3NH(CH2)3NH2 Thermospermine: H2N(CH2)3NH(CH2)4NH(CH2)4NH2 Caldopentamine: H2N(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2. The first polyamine discovered in a living organism was tetramine, a spermine crystallised out of sperm in 1678 by Van Leewenkeuk [9]. Putrescine was discovered in the end of the 19th century in microbes and then triamine: spermidine was discovered in the beginning of the 20th century [2]. Later studies have shown that in animal cells spermidine and spermine occur at elevated levels, while in prokaryotes spermidine and putrescine contents are dominant. Putrescine, spermidine, 1,3-diaminopropan, homospermidine, norspermidine, and norspermine have been found in many gramnegative bacteria and algae [7, 10, 11]. Total concentration of PA in living organisms is on the order of millimols, however, the concentration of free polyamines is much lower. A low level of free amines follows from the fact that they are involved in noncovalent interactions with biomolecules occurring in living organisms such as nucleic acids, proteins, or phospholipids. High concentrations of non-bonded polyamines have been detected first of all in young molecules in the process of growth, in particular in rapidly proliferating cancer cells [6, 12]. Elevated levels of free polyamines have been observed, e.g. in breast, colon, lung, prostate, and skin tumours, accompanied by changed levels of enzymes responsible for biosynthesis and catabolism of polyamines. Because of the increased level of free polyamines and a tendency of their interaction with nucleic acids and other bioligands, these compounds have become objects of intense study [1, 13–19]. There is no doubt that the regulation of biosynthesis of polyamines and catabolism is one of the most important pathways in the search strategy for chemoprevention and chemotherapeutic drugs [14, 15, 20–36]. The present state of knowledge of these processes, their significance in biological systems, and their application in medicine are presented in subsequent sections of this chapter.
Rocznik
Strony
57--79
Opis fizyczny
Bibliogr. 160 poz., rys., schem.
Twórcy
autor
  • A. Mickiewicz University, Faculty of Chemistry ul. Umultowska 89b, 61-614 Poznań
autor
  • A. Mickiewicz University, Faculty of Chemistry ul. Umultowska 89b, 61-614 Poznań
  • Universitat Rovira i Virgili, Departament de Enginyeria Química Av. Països Catalans, 26–43007 Tarragona, Spain
Bibliografia
  • [1] E.W. Gerner, F.L. Jr. Meyskens, Nat. Rev. Cancer, 2004, 4, 781.
  • [2] S.S. Cohen, A Guide to the Polyamines, Oxford University Press, New York, 1998.
  • [3] L.J. Marton, A.E. Pegg, Annu. Rev. Pharmacol. Toxicol., 1995, 35, 55.
  • [4] A.E. Pegg, Cancer Res., 1988, 48, 759.
  • [5] H.M. Wallace, A.V. Fraser, A. Hughes, Biochem. J., 2003, 376, 1.
  • [6] B. Ganem, Acc. Chem. Res., 1982, 15, 290.
  • [7] S. Yamamoto, Y. Koumoto, S. Shikami, S. Shinoda, Microbiol. Immunol., 1990, 34, 575.
  • [8] L. Lomozik, A. Gasowska, R. Bregier-Jarzebowska, R. Jastrzab, Coord. Chem. Rev., 2005, 249, 2335.
  • [9] H. Bachrach, Plant. Physiol. Biochem., 2010, 48, 490.
  • [10] A. Raina, J. Jänne, Med. Biol., 1975, 53, 121.
  • [11] P. Scherer, H. Kneifel, J. Bacteriol, 1983, 154, 1315.
  • [12] M.D. Bratek-Wiewiorowska, M. Alejska, M. Figlerowicz, J. Barciszewski, M. Wiewiorowski, M. Jaskolski, Pure Appl. Chem. 1987; 59, 407.
  • [13] M.L. Antonelli, S. Balzamo, V. Carunchio, E. Cernia, R. Purrello, J. Inorg. Biochem., 1988, 32, 153.
  • [14] H. Tabor, C.W. Tabor, Pharmacol. Rev., 1964,16, 245.
  • [15] J. Jänne, L. Alhonen, P. Leinonen, Ann. Med., 1991, 23, 241.
  • [16] A. Manni, Cancer Lett., 1995, 92, 49.
  • [17] S. Gupta, N. Ahmad, S.R. Marengo, G.T. MacLennan, N.M. Greenberg, H. Mukhtar, Cancer Res., 2000, 60, 5125.
  • [18] S.K. Gilmour, Toxic. Appl. Pharm., 2007, 224, 249.
  • [19] J.R. Jr. Upp, R. Saydjari, C.M. Jr. Townsend, P. Singh, S.C. Barranco, J.C. Thompson, Ann. Surg., 1989, 207, 662.
  • [20] H.G. Williams-Ashman, Z.N. Canellakis, Perspect. Biol. Med., 1979, 22, 421.
  • [21] J. Jänne, A. Raina, M. Siimes, Acta Physiol. Scand., 1964, 62, 352.
  • [22] O.P. Shukla, J. Sci. Ind. Res., 1990, 49, 263.
  • [23] B. Frydman, W.M. Westler, K. Samejima, J. Org. Chem., 1996, 61, 2588.
  • [24] B.G. Feuerstein, L.D. Williams, H.S. Basu, L.J. Marton, J. Cell Biochem., 1991, 46, 37.
  • [25] H.C. Ha, N.S. Sirisoma, P. Kuppusamy, J.L. Zweier, P.M. Woster, R.A. Jr. Casero, Proc. Natl. Acad. Sci. USA, 1998, 95, 11140.
  • [26] H.T. Kurata, L.J. Marton, C.G. Nichols, J. Gen. Physiol., 2006, 127, 467.
  • [27] J.H. Park, J. Biochem., 2006, 139, 161.
  • [28] J.H. Park, L. Aravind, E.C. Wolf, J. Kaevel, Y.S. Kim, M.H. Park, Proc. Natl. Acad. Sci. USA, 2006, 103, 51.
  • [29] K.E. Tobias, J. Shor, C. Kahana, Oncogene, 1995, 11, 1721.
  • [30] L.M. Shantz, V.A. Levin, Amino Acids, 2007, 33, 213.
  • [31] E. Holtta, L. Sistonen, K. Alitalo, J. Biol. Chem., 1988, 263, 4500.
  • [32] N.A. Ignatenko, N. Babbar, D. Mehta, Mol. Carcinog., 2004, 39, 91.
  • [33] P. Celano, C.M. Berchtold, F.M. Giardiello, R.A. Jr. Casero, Biochem. Biophys. Res. Commun., 1989, 165, 384.
  • [34] G. Packham, C. Bello-Fernandez, J.L. Cleveland, Cell. Mol. Biol. Res., 1994, 40, 699.
  • [35] J.A. Nilsson, K.H. Maclean, U.B. Keller, H. Pendeville, T.A. Baudino, J.L. Cleveland, Mol. Cell Biol., 2004, 24, 1560.
  • [36] L.R. Sauders, E. Verdin, Proc. Am. Assoc. Cancer Res., 2006, 47, 1093.
  • [37] S.I. Harik, S.H. Snyder, Brain. Res., 1974, 66, 328.
  • [38] G.G. Shaw, A.J. Pateman, J. Neurochem., 1973, 20, 1225.
  • [39] C.W. Tabor, H. Tabor, Annu. Rev. Biochem., 1984, 53, 749.
  • [40] N. Seiler, J. Chromatogr., 1986, 379, 157.
  • [41] F. Schuber, Biochem. J., 1989, 260, 1.
  • [42] C.W. Tabor, H. Tabor, Annu. Rev. Biochem., 1976, 45, 285.
  • [43] J. Jänne, H. Pösö, A. Raina, Biochim. Biophys. Acta, 1978, 473, 241.
  • [44] P.E. Baze, G. Milano, P. Verrando, N. Renée, J.P. Ortonne, Arch. Dermatol. Res., 1983, 275, 218.
  • [45] A.E. Pegg, J. Biol. Chem., 2006, 281, 14529.
  • [46] Y. Takeda, K. Sameima, K. Nagano, M. Watanabe, H. Sugeta, Y. Kyogoku, Eur. J. Biochem., 1983, 130, 383.
  • [47] H.R. Matthews, Bioessays, 1993, 15, 561.
  • [48] S.S. Cohen, Nature, 1978, 274, 209.
  • [49] W. Saenger, Principles of Nucleic Acid Structure, N.Y. Springer Verlag, 1984.
  • [50] W.H. Braunlin, T.J. Strick, M.T. Record, Biopolymers, 1982, 21, 1301.
  • [51] Y. Fang, J.H. Hoh, J. Am. Chem. Soc., 1998, 120, 8904.
  • [52] I. Matsui, L. Wiegand, A.E. Pegg, J. Biol. Chem., 1981, 256, 2454.
  • [53] A.E. Pegg, I. Matsui, J.E. Seely, M.L. Pritchard, H. Poso, Med. Biol., 1981, 59, 327.
  • [54] L. Persson, A.E. Pegg, J. Biol. Chem., 1984, 259, 12364.
  • [55] R.A. Jr. Casero, A.E. Pegg, FASEB J., 1993, 7, 653.
  • [56] R.A. Jr. Casero, P. Celano, S.J. Ervin, N.B. Applegren, L. Wiest, A.E. Pegg, J. Biol. Chem., 1991, 266, 810.
  • [57] R.A. Casero, A.E. Pegg, Biochem. J., 2005, 421, 323.
  • [58] E. Holtta, Biochem., 1977, 16, 91.
  • [59] E. Holtta, Methods Enzymol., 1983, 94, 306.
  • [60] S. Vujcic, P. Liang, P. Diegelman, D.L. Kramer, C.W. Porter, Biochem. J., 2003, 370, 19.
  • [61] T. Wu, V. Yankovskaya, W.S. McIntire, J. Biol. Chem., 2003, 278, 20514.
  • [62] Y. Wang, A. Hacker, T. Murray-Steward, Cancer Chemother. Pharmacol., 2005, 56, 83.
  • [63] H.M. Wallace, J. Duthie, D.M. Evans, S. Lamond, K.M. Nicoll, S.D. Heys, Clin. Cancer Res., 2000, 6, 3657.
  • [64] X. Xie, R.J. Gillies, E.W. Gerner, J. Biol. Chem. 1997, 272, 20484.
  • [65] Y. Wang, W. Devereux, P.M. Woster, T.M. Stewart, A. Hacker, R.A. Jr. Casero, Cancer Res., 2001, 61, 5370.
  • [66] S. Vujcic, P. Diegelman, C.J. Bacchi, D.L Kramer, C.W. Porter, Biochem. J., 2002, 367, 665.
  • [67] Y. Wang, T. Murray-Stewart, W. Devereux, A. Hacker, B. Frydman, P.M. Woster, R.A. Jr. Casero, Biochem. Bioph. Res. Com., 2003, 304, 605.
  • [68] N. Babbar, R.A. Jr. Casero, Cancer Res., 2006, 66, 11125.
  • [69] A.C. Goodwin, C.E.D. Shields, S. Wu, D.L. Huso, X. Wu, T.R. Murray-Stewart, A. Hacker-Prietz, S. Rabizadeh, P.M. Woster, C.L. Sears, R.A. Casero, P. Natl. Acad. Sci. USA, 2008, 108, 15354.
  • [70] R.A. Jr. Casero, L.J. Marton, Nat. Rev. Drug Discov., 2007, 6, 373.
  • [71] A.E. Pegg, IUBMB Life, 2009, 61, 880.
  • [72] H.M. Wallace, Eur. J. Clin. Invest., 2000, 30, 1.
  • [73] D. Soulet, B. Gagnon, S. Rivest, M. Audette, R.A. Poulin, J. Biol. Chem., 2004, 279, 49355.
  • [74] M. Belting, S. Persson, L.A. Fransson, Biochem. J., 1999, 338, 317.
  • [75] M. Belting, K. Mani, M. Jönsson, F. Cheng, S. Sandgren, S. Jonsson, K. Ding, J.G. Delcros, L.A. Fransson, J. Biol. Chem., 2003, 278, 47181.
  • [76] G.M. Cragg, P.G. Grothaus, D.J. Newman, Chem. Rev. 2009, 109, 3012.
  • [77] R.A. Jr. Casero, Y. Wang, T.M. Stewart, W. Devereux, A. Hacker, Y. Wang, R. Smith, P.M. Woster, Biochem. Soc. Trans., 2003, 31, 361.
  • [78] F. Balkwill, A. Mantovani, Lancet, 2001, 357, 539.
  • [79] L.M. Coussens, Z. Werb, Nature, 2002, 420, 860.
  • [80] I. Holm, L. Persson, O. Heby, N. Seiler, Biochim. Biophys. Acta, 1988, 972, 239.
  • [81] A. Anchini, L. Fabbrizzi, R. Barbucci, A. Mastroianni, J. Chem. Soc. Dalton Trans., 1977, 2224.
  • [82] L. Lomozik, Metal complexes with polyamines, [w:] Handbook of metal-ligand interaction in biological fluids, (Berthon G., Red.), New York, Basel, Hong Kong, Marcel Dekker Inc., 1995, 686.
  • [83] M.L. Edwards, D.M. Stemerick, J.R. McCarthy, Tetrahedron, 1994, 50, 5579.
  • [84] T. Thomas, T.J. Thomas, Cell Mol. Life Sci., 2001, 58, 244.
  • [85] D. Russell, S.H. Snyder, P. Natl. Acad. Sci. USA, 1968, 60, 1420.
  • [86] F.M. Giardiello, S.R. Hamilton, L.M. Hylind, Cancer Res., 1997, 57, 199.
  • [87] C.A. Elmets, M. Athar, Cancer Prev. Res., 2010, 3, 8.
  • [88] A. Manni, D. Mauger, P. Gimotty, B. Badger, Clin. Cancer Res., 1996, 2, 1901.
  • [89] R. Chaturvedi, M. Asim, J. Romero-Gallo, D.P. Barry, S. Hoge, T. de Sablet, A.G. Delgado, L.E. Wroblewski, M.B. Piazuelo, F. Yan, D.A. Israel, R.A. Jr. Casero, P. Correa, A.P. Gobert, D.B. Polk, R.M. Jr. Peek, K.T. Wilson, Gastroenterology, 2011, 141, 1696.
  • [90] H. Xu, R. Chaturvedi, Y. Cheng, F.I. Bussiere, M. Asim, M.D. Yao, D. Potosky, S.J. Meltzer, J.G. Rhee, S.S. Kim, S.F. Moss, A. Hacker, Y. Wang, R.A. Casero, K.T. Wilson, Cancer Res., 2004, 64, 8521.
  • [91] A.C. Goodwin, S. Jadallah, A. Toubaji, K. Lecksell, J.L. Hicks, Prostate, 2008, 68, 766.
  • [92] L. Alhonen, M. Halmekyto, V.M. Kosma, Int. J. Cancer, 1995, 63, 402.
  • [93] L. Huang, C. Zhu, Y. Sun, G. Xie, G.G. Mackenzie, G. Qiao, D. Komninou, B. Rigas, Carcinogenesis, 2010, 31, 1982.
  • [94] N. Babbar, N.A. Ignatenko, R.A. Jr. Casero, E.W. Gerner, J. Biol. Chem., 2003, 278, 47762.
  • [95] M.D.T. Senanayake, H. Amunugama, T.D. Boncher, R.A. Casero, P.M. Woster, Essays. Biochem., 2009, 46, 77.
  • [96] P.J. Dyson, G. Sava, Dalton Trans., 2006, 16, 1929.
  • [97] M. Gielen, Metal Based Antitumor Drugs, Freud, London UK 1988.
  • [98] N. Farrell, Uses of Inorganic Chemistry in Medicine, Royal Society of Chemistry, Cambridge, UK, 1999.
  • [99] S.P. Fricker, Dalton Tran., 2007, 43, 4903.
  • [100] M.J. Hannon, Pure Appl. Chem., 2007, 79, 2243.
  • [101] S.H. Rijt, P.J. Sadler, Drug Discov. Today, 2009, 14, 1089.
  • [102] N. Farrell, Polynuclear platinum drugs, [w:] Metal Ions in Biological Systems, (H. Sigel, Red.) Vol. 42, Metal Complexes in Tumor Diagnosis and as Anticancer Agents, 2004, 251.
  • [103] D. Lebwohl, R. Canetta, Eur. J. Cancer, 1998, 34, 1522.
  • [104] H. Brunner, P. Hankofer, U. Holzinger, B. Treittinger, H. Schonenberger, Eur. J. Med. Chem., 1990, 25, 35.
  • [105] N. Farrell, Y. Qu, L. Feng, B. Van Houten, Biochem., 1990, 29, 9522.
  • [106] J.D. Roberts, B. Van Houten, Y. Qu, N.P. Farrell, Nucleic Acids Res., 1989, 17, 9719.
  • [107] C. Navarro-Ranninger, F. Zamora, J.M. Perez, I. Lopez-Solera, S. Martinez-Carrera, J.R. Masaguer, C. Alonso, J. Inorg. Biochem., 1992, 46, 267.
  • [108] C. Navarro-Ranninger, J.M. Perez, F. Zamora, V.M. Gonzales, J.R. Masaguer, C. Alonso, J. Inorg. Biochem., 1993, 52, 37.
  • [109] L.J. Teixeira, M. Seabra, E. Reis, M.T. Girao da Cruz, M.C. Pedroso de Lima, E. Pereira, M.A. Miranda, M.P.M. Marques, J. Med. Chem., 2004, 47, 2917.
  • [110] C. Navarro-Ronninger, P. Amo-Ochoa, J.M. Perez, V.M. Gonzalez, J.M. Masaguer, C. Alonso, J. Inorg. Biochem., 1994, 53, 177.
  • [111] H. Rauter, R. Di Domenico, E. Menta, A. Oliva, Y. Qu, N. Farrell, Inorg. Chem., 1997, 36, 3919.
  • [112] Y. Jung, S.J. Lippard, Chem. Rev., 2007, 107, 1387.
  • [113] T. Rau, R. van Eldik, Metal Ions in Biological Systems, NewYork, NY, USA, 1996.
  • [114] C. Orvig, M.J. Abrams, Chem. Rev., 1999, 99, 2202.
  • [115] C.S. Allardyce, A. Dorcier, C. Scolaro, P.J. Dyson, Appl. Organomet. Chem., 2005, 19, 1.
  • [116] P. Amo-Ochoa, V.M. Gonzalez, J.M. Perez, J.R. Masaguer, C. Alonso, C. Navarro-Ranninger, J. Inorg. Biochem., 1996, 64, 287.
  • [117] N. Farrell, Cancer Invest., 1993, 11, 578.
  • [118] B.A.J. Jansen, J. Van der Zwan, J. Reedijk, H. Den Dulk, J.A. Brouwer, Eur. J. Inorg. Chem., 1999, 9, 1429.
  • [119] A.H. Calvert, H. Thomas, N. Colombo, M. Gore, H. Earl, L. Sena, G. Camboni, P. Liati, C. Sessa, Eur. J. Cancer, 2001, 37, 260.
  • [120] H. Souzu, Biochem. Biphys. Acta, 1986, 861, 353.
  • [121] A. Alvarez-Valdes, J.M. Perez, I. Lopez-Solera, R. Lannegrand, J.M. Continente, P. Amo-Ochoa, M.J. Camazon, X. Solans, M. Font-Bardia, C. Navarro-Ranninger, J. Med. Chem., 2002, 45, 1835.
  • [122] K. Nishioka, Polyamines in Cancer: Basic Mechanisms and Clinical Approaches, Springer, Berlin, Germany, 1966.
  • [123] Y. Qu, N.J. Scarsdale, M.C. Tran, N.P. Farrell, J. Biol. Inorg. Chem., 2003, 8, 19.
  • [124] K. Chvalova, J. Kasparkova, N. Farrell, V. Brabec, FEBS J., 2006, 273, 3467.
  • [125] E. Monti, M. Gariboldi, A. Maiocchi, J. Med. Chem., 2005, 48, 857.
  • [126] M.R. Costa Couri, M. Vieira de Almeida, A.P. Soares Fontes, Eur. J. Inorg. Chem., 2006, 9, 1868.
  • [127] Q. Liu, Y. Qu, R. van Antwerpen, N. Farrell, Biochem., 2006, 45, 4248.
  • [128] J.W. Williams, Y. Qu, G.H. Bulluss, E. Alvorado, N.P. Farrell, Inorg. Chem., 2007, 46, 5820.
  • [129] S. Komeda, T. Moulaei, M. Chikuma, Nucleic Acids Res., 2011, 39, 325.
  • [130] S.M. Fiuza, A.M. Amado, P.J. Oliveira, V.A. Sardao, L.A.E. Batista de Carvalho, M.P.M. Marques, Lett. Drug Des. Discov., 2006, 3, 149.
  • [131] M.P.M. Marques, T. Girao, M.C. Pedroso de Lima, A. Gameiro, E. Pereira, P. Garcia, BBA-Mol. Cell Res., 2002, 1589, 63.
  • [132] A.S. Soares, S.M. Fiuza, M.J. Gonçalves, L.A.E. Batista de Carvalho, M.P.M. Marques, A.M. Urbano, Lett. Drug Des. Discov., 2007, 4, 460.
  • [133] C. Navarro-Ranninger, J.M. Perez, F. Zamora, V.M. Gonzalez, J.R. Masaguer, C. Alonso, J. Inorg. Bioch., 1993, 52, 37.
  • [134] M. Navarro, N.P. Pena, I. Colmenares, T. González, M. Arsenak, P. Taylor, J. Inorg. Biochem., 2006, 100, 152.
  • [135] A. Hegmans, J. Kasparkova, O. Vrana, L.R. Kelland, V. Brabec, N.P. Farrell, J. Med. Chem., 2008, 51, 2254.
  • [136] S.M. Fiuza, A.M. Amado, H.F. dos Santos, M.P.M. Marques, L.A.E. Batista de Carvalho, Phys. Chem. Chem. Phys., 2010, 12, 14309.
  • [137] R. Tummala, P. Diegelman, S.M. Fiuza, Oncol. Rep., 2010, 24, 15.
  • [138] R. Tummala, P. Diegelman, S. Hector, Cancer Chemoth. Pharm., 2011, 67, 401.
  • [139] O. Corduneanu, A.M. Chiorcea-Paquim, S.M. Fiuza, M.P.M. Marques, A.M. Oliveira-Brett, Bioelectrochemistry, 2010, 78, 97.
  • [140] O. Corduneanu, A.M. Chiorcea-Paquim, V. Diculescu, S.F.M. Fiuza, M.P.M. Marques, A.M. Oliveira-Brett, Anal. Chem., 2010, 82, 1245.
  • [141] S.M. Fiuza, J. Holy, L.A.E. Batista de Carvalho, M.P.M. Marques, Chem. Biol. Drug Des., 2011, 77, 477.
  • [142] A.L.M. Batista de Carvalho, S.M. Fiuza, J. Tomkinson, L.A.E. Batista de Carvalho, M.P.M. Marques, Inter. J. Spect., 2012, 27, 403.
  • [143] W. Friebolin, G. Schilling, M. Zöller, E. Amtmann, J. Med. Chem., 2005, 48, 7925.
  • [144] C. Manzotti, G. Pratesi, E. Menta, R. Di Domenico, E. Cavalletti, H.H. Fiebig, L.R. Kelland, N. Farrell, D. Polizzi, R. Supino, G. Pezzoni, F. Zunino, Clin. Cancer Res., 2000, 6, 2626
  • [145] A. Messere, E. Fabri, M. Borgatti, R. Gambari, B. Di Blasio, C. Pedone, A. Romanelli, J. Inorg. Biochem., 2007, 101, 254
  • [146] V. Alverdi, L. Giovagnini, C. Marzano, R. Seraglia, F. Bettio, S. Sitran, R. Graziani, D. Fregona, J. Inorg. Biochem., 2004, 98, 1117
  • [147] M.P.M. Marques, L.A.E. Batista de Carvalho, Biochem. Soc. Trans., 2007, 35, 374
  • [148] T.M. Silva, S. Andersson, S.K. Sukumaran, M.P. Marques, L. Persson, S. Oredsson, PLoS ONE, 2013, 8, e55651
  • [149] B. Tadolini, Mol. Cell Biochem., 1988, 83, 179
  • [150] B. Matkovics, V. Kecskemeti, S.I. Varga, Z. Novak, Z. Kertesz, Comp. Biochem. Physiol. B, 1993, 104, 475
  • [151] E. Pedreno, A. Lopez-Contreras, J. Cremades, A. Penafiel, J. Inorg. Biochem., 2005, 99, 2074
  • [152] L. Kelland, Nature Rev. Cancer, 2007, 7, 573
  • [153] L. Gatti, P. Perego, R. Leone, Mol. Pharmaceut., 2010, 7, 207
  • [154] D.I. Jodrell, T.R.J. Evans, W. Steward, Eur. J. Cancer, 2004, 40, 1872
  • [155] R. Bonomi, G. Saielli, P. Scrimin, F. Mancin, Supramol. Chem., 2013, 25, 665
  • [156] N. Hallinan, V. Besançon, M. Forster, G. Elbaze, Y. Ducommun, A.E. Merbach, Inorg. Chem., 1991, 30, 1112
  • [157] U. Frey, S. Elmroth, B. Moullet, L.I. Elding, A.E. Merbach, Inorg. Chem., 1991, 30, 5033
  • [158] H. Hohmann, B. Hellquist, R. Van Eldik, Inorg. Chim. Acta, 1991, 188, 25
  • [159] D. Esteban-Fernández, E. Moreno-Gordaliza, B. Canas, M.A. Palacios, M.M. Gómez-Gómez, Metallomics, 2010, 2, 19
  • [160] N. Farrell, J.A. McCleverty, T.J. Meyer, Metal complexes as drugs and chemotherapeutic agents, [w:] Comprehensive Coordination Chemistry II, Pergamon, Oxford, UK, 2003, 809.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46c8074d-759a-4305-86f9-3195f5692824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.