PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of selected elements in catalytic converters using ICP-MS and microwave digestion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fuels combustion, polluting the atmosphere is a side effect of an engines’ work. Increasing ecological awareness has led to constant pursuit of disposing harmful substances properly. Catalytic converters (car catalysts), containing precious metals from the platinum group, including palladium, platinum and rhodium, have been commonly adopted for this purpose. These critical elements can be found in many raw materials used frequently throughout the economy. Therefore, it is economically viable to retrieve these elements from, among the others, spent catalysts, so they can be reused to manufacture new converters. In order to determine a possible cost of spent car catalyst, it is essential to use the analytical techniques to determine elemental content in any given sample. X-ray fluorescence spectroscopy (XRF) is an example of such a technique. It is nevertheless advisable to use a complementary procedure to confirm any results obtained. A cross-verification technique was developed using inductively coupled plasma mass spectrometry (ICP-MS). This procedure was verified using comparative studies, which confirmed its usefulness and correctness.
Twórcy
  • Unimetal Recycling Sp. z o.o., 21 Tuwima Str., 32-540 Trzebinia, Poland
  • Unimetal Recycling Sp. z o.o., 21 Tuwima Str., 32-540 Trzebinia, Poland
  • Unimetal Recycling Sp. z o.o., 21 Tuwima Str., 32-540 Trzebinia, Poland
  • Unimetal Recycling Sp. z o.o., 21 Tuwima Str., 32-540 Trzebinia, Poland
Bibliografia
  • [1] M. V. Twigg, Controlling automotive exhaust emissions: Successes and underlying science, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363 (2005) 1013–1033. https://doi.org/10.1098/rsta.2005.1547.
  • [2] J.G. Cohn, Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines, Environ. Health Perspect. 10 (1975) 159–164. https://doi.org/10.1289/ehp.7510159.
  • [3] M. Keersemaker, Critical Raw Materials, in: Suriname Revisited: Economic Potential of its Mineral Resources, SpringerBriefs in Earth Sciences, Springer, Cham., 2020: pp. 69–82. https://doi.org/10.1007/978-3-030-40268-6_9.
  • [4] H. Yoon, C.S. Park, C. Yoon, J. Hong, N.S. Kim, K.N. Han, Quantitative analysis of platinum group metals using X-ray fluorescence spectrometry, Miner. Metall. Process. 22 (2005) 101–106. https://doi.org/10.1007/bf03403122.
  • [5] K. Van Meel, A. Smekens, M. Behets, P. Kazandjian, R. Van Grieken, Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target X-ray fluorescence spectrometry, Anal. Chem. 79 (2007) 6383–6389. https://doi.org/10.1021/ac070815r.
  • [6] H.D. Fiedler, E.E. Drinkel, B. Orzechovicz, E.C. Leopoldino, F.D. Souza, G.I. Almerindo, C. Perdona, F. Nome, Simultaneous nondestructive analysis of palladium, rhodium, platinum, and gold nanoparticles using energy dispersive X-ray fluorescence, Anal. Chem. 85 (2013) 10142–10148. https://doi.org/10.1021/ac402419r.
  • [7] Analytical Science Application, (2021). https://hha.hitachi-hightech.com/.
  • [8] Analysis of Platinum (Pt), Palladium (Pd), and Rhodium (Rh), in Recycled Catalytic Converters from Automobiles, (2020).
  • [9] M. Saternus, A. Fornalczyk, Possible ways of refining precious group metals (PGM) obtained from recycling of the used auto catalytic converters, Metalurgija. 52 (2013) 267–270.
  • [10] C. Hagelüken, Recycling the platinum group metals: A European perspective, Platin. Met. Rev. 56 (2012) 29–35. https://doi.org/10.1595/147106712X611733.
  • [11] C.R.M. Rao, G.S. Reddi, Platinum group metals (PGM); occurrence, use and recent trends in their determination, TrAC- Trends Anal. Chem. 19 (2000) 565–586. https://doi.org/10.1016/S0165-9936(00)00031-5.
  • [12] I. Iwasaki, H. Nakazawa, A.S. Malicsi, L. Xiaowei, Recovery of Platinum-Group Metals from Gabbroic Rocks, JOM. 40 (1988) 36–39. https://doi.org/10.1007/BF03258172.
  • [13] H. Dong, J. Zhao, J. Chen, Y. Wu, B. Li, Recovery of platinum group metals from spent catalysts: A review, Int. J. Miner. Process. 145 (2015) 108–113. https://doi.org/10.1016/j.minpro.2015.06.009.
  • [14] H. Yoon, C. Yoon, C.S. Park, T. Ko, N.S. Kim, K.N. Han, Quantitative determination of PGM using ICP-MS, ICP-AES, AAS and XRF, Miner. Metall. Process. 22 (2005) 59–64. https://doi.org/10.1007/bf03403197.
  • [15] F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, W.G. Davenport, Platinum-Group Metals, Production, Use and Extraction Costs, in: Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011: pp. 395–409. https://doi.org/10.1016/b978-0-08-096809-4.10031-0.
  • [16] International Platinum Group Metals Association - Standards by Regions, (2020). http://www.ipa-news.com/en/123-0-Standards-by-Region.htm.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46c4e4df-a0da-42bc-91a6-91129bea8e03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.