PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iterative algorithm for the split equality problem in Hilbert spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we studied the split equality problems (SEP) with a new proposed iterative algorithm and established the strong convergence of the proposed algorithm to solution of the split equality problems (SEP).
Wydawca
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
Bibliografia
  • [1] A. Aleyner and S. Reich, Block-iterative algorithms for solving convex feasibility problem in Hilbert and Banach, J. Math. Anal. Appl. 343 (2008), no. 1, 427-435.
  • [2] H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Alternating proximal algorithms for weakly coupled minimization problems. Applications to dynamical games and PDEs, J. Convex Anal. 15 (2008), no. 3, 485-506.
  • [3] H. H. Bauschke and j. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), 367-426,
  • [4] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18 (2002), 441-453.
  • [5] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 20 (2004), 103-120.
  • [6] C. Byrne and A. Moudafi, Extensions of the CQ algorithm for the split feasibility and split equality problems, preprint (2013), https://hal-uag.archives-ouvertes.fr/hal-00776640.
  • [7] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol. 51 (2006), no. 10, 2353-2365.
  • [8] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239.
  • [9] P. L. Combettes and J. C. Pesquet, Proximal splitting methods in signal processing, in: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl. 49, Springer, New York (2011), 185-212.
  • [10] Q. Dong, S. He and J. Zhao, Solving the split equality problem without prior knowledge of operator norms, Optimization 64 (2015), DOI 10.1080/02331934.2014.895897.
  • [11] S. He and W. Zhu, A note on approximating curve with 1-norm regularization method for the split feasibility problem, J. Appl. Math. 2012 (2012), Article ID 683890.
  • [12] Z. Li, D. Dan and W. Zhang, A self-adaptive projection-type method for nonlinear multiplesets split feasibibilty problem, Inverse Probl. Sci. Eng. 20 (2013), 155-170.
  • [13] G. Lopez, V. Martin-Marquez, F. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems 28 (2012), no. 8, Article ID 085004.
  • [14] A. Moudafi, Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2014), no. 4, 809-818.
  • [15] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiei, Bucharest, 1978.
  • [16] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAMj. Control Optim. 28 (2000), no. 2, 431-446.
  • [17] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. (2) 66 (2002), no. 1, 240-256.
  • [18] Q. Yang, The relaxed CQ algorithm for soloving the split feasibility problem, Inverse Problems 20 (2004), 1261-1266.
  • [19] J. Zhao, J. Zhang and Q. Yang, Asimple projection method for solving the multiple-sets split feasibility problem, Inverse Probl. Sci. Eng. 21 (2013), 537-546.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46c3c9ec-4ed0-4b67-989e-d5fd18a2562c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.