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Abstract: The paper proposes a method for solving systems of
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1. Introduction

Let us consider a system of linear inequalities:

A · x− b ≤ 0m, (1)

with A is an m × n matrix, A = {aij}, x ∈ Rn, x = {xj}, b ∈ Rm, b = {bi} ,
where i = 1, . . . ,m; j = 1, . . . n; 0m being an m dimensional vector of zeroes.

The goal of this paper is to establish whether there exists a solution for (1)
attainable in a finite number of iterations, with reasonable computational effort.
It will be determined whether the set of solutions:

X = {x ∈ Rn | A · x− b ≤ 0m } (2)
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is empty or not. In the case it is not empty, at least one solution of (1) will
be established. The significant achievement of the paper is that the set of
violated constraints is locally ordered, which results in the locally polynomial
time complexity. In the general case, for all possible combinations of constraints,
the computational complexity is exponential in the worst case.

Solving systems of linear inequalities is important from both theoretical and
practical points of view. Systems of linear inequalities are often used for mod-
elling and solving complex practical problems from very different domains, e.g.,
having economical or technological origins, and many others. The well-known
linear programming problem is reduced to a system of linear inequalities, see
Tretyakov (2010). Therefore, it is very important to first establish whether a
given system of linear inequalities has a non-empty set of solutions X and,
if so, to find at least one of them, x ∈ X . There is a well-known list of
eighteen unsolved problems in mathematics that was presented by Smale in
1998. The problem of finding strongly-polynomial time algorithm which de-
cides whether there exists a solution of (1) or, equivalently, whether the set X
in (2) is non empty, constitutes the 9th of the Smale’s problems and is still
not solved. The ellipsoid methods and interior-point techniques are providing
algorithms of weakly-polynomial time complexity.

In this paper, the method for establishing whether there exists a solution for
(1) is proposed, and moreover, the number of iterations (equivalent to compu-
tational complexity), with respect to m and n, is locally polynomial and in the
worst case it has a geometric convergence rate.

Let us define the set of pseudo-solutions of (1) as follows:

X∗ =

{

x∗
∣

∣

∣

∣

x∗ = arg min
x∈Rn

∥

∥(A · x− b)+
∥

∥

2
}

, where c+ = max {c, 0} . (3)

If some point, sufficiently close to the set X∗ of solutions of (3) is known,
then it is possible to a find a pseudo-solution of (1) in the polynomial number
of computational iterations of the order of O(m3 ·n3). It should be emphasized
that the solution for (3) always exists and when X 6= ∅, it will be a solution
for (1).

Many methods for solving (1) have been proposed (see Karmanov, 1989; Go-
likov and Evtushenko, 2003; Evtushenko and Golikov, 2003; Tretyakov, 2010;
Tretyakov and Tyrtyshnikov, 2013, or Han, 1980) . All of those methods have
reasonable computational complexity but, as mentioned above, up to date, no
strongly-polynomial time algorithm for solving (1) was proposed. In Tretyakov
and Tyrtyshnikov (2013) and in Mangasarian (2001) linear programming prob-
lems are solved by reducing them to the unconditional minimization of strongly
convex piecewise quadratic function. A solution will be obtained in the finite
polynomial number of iterations if the starting point of the algorithm belongs
to the sufficiently close neighborhood of the unique solution of the problem.
Unfortunately, there are severe limitations imposed on the function to be mini-
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mized. Namely, it should be strongly convex and the eigenvalues of the Hessian
matrix should satisfy specific conditions, etc.

This results in substantial limitations on the classes of problems, which could
be solved, e.g. it is required that (1) has only unique solution etc. The solution
method, described in Tretyakov and Tyrtyshnikov (2013) is based on exploiting
information on the problem being solved by analyzing sufficiently small neigh-
borhood of an arbitrary solution of (1). Analogous methods were proposed in
Facchinei, Fischer and Kanzow (1998) for the forecast (identification) of the ac-
tive constraints in the sufficiently close neighborhood of the solution of the prob-
lem. In the papers by Tretyakov and Tyrtyshnikov (2015) and Wright (2005),
locally polynomial methods for solving quadratic programming problems, based
on the similar ideas, are presented. It was proved in Goffin (1982) that the
well-known ellipsoid method is not polynomial in the worst case. Tretyakov
(2010) proposed the gradient projection method for solving (1); this method is
finding solution of (1) in the finite number of iterations and is a combination of
iterational and straightforward (e.g. Gauss) methods.

The present paper proposes a computational method, which establishes the
existence of a solution to (1) and finds it, if the solution exists. When the
starting point for the proposed method is sufficiently close to the set X∗, i.e.
the set of pseudo-solutions for (1), as defined in (3), then its computational
complexity is locally polynomial, namely of the order O(m3 · n3).

Finding such a starting point from the sufficiently small neighbourhood of
the set X∗ is guaranteed by the gradient descent method with the special step
choice when it minimizes the convex function ϕ(x) with the Lipschitz gradient
i.e.

‖ϕ′(x)− ϕ′(y)‖ ≤ L · ‖x− y‖ ,

where L is the Lipschitz constant. For the iterative sequence {xk}, fulfilling the
montonicity condition i.e.

∀x∗ ∈ X∗ : ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ , k = 0, 1 . . . ,

the above is guaranteeing the convergence to x∗ from any arbitrary point x0 ∈
Rn and getting into the neighbourhood X∗ at a certain step k.

The proposed method is working for the general formulation of (1); there
are no restrictive assumptions made.

The rest of the paper is organized as follows: In Section 2 necessary mathe-
matical apparatus, important definitions and theoretical results are presented,
in Section 3 the idea of the monotonic gradient method with the special step
choice is described, Section 4 is presenting main results of the paper and Section
5 is discussing some additional issues.



304 Y. Evtushenko, K. Szkatu la and A. Tretyakov

2. Definitions and theoretical results

Let

ϕ(x) =
1

2
· ‖(A · x− b)+‖

2 , where c+ = max {c, 0} . (4)

Theorem 1 Function ϕ(x) is convex and has a non-empty set of minimal val-
ues

X∗ =

{

x∗ ∈ Rn

∣

∣

∣

∣

ϕ(x∗) = min
x∈Rn

ϕ(x)

}

. (5)

Proof. Theorem 1 follows immediately from the well-known features of the
quadratic type convex functions.

It is obvious that elements x∗ ∈ X∗, cf. (5), will satisfy:

ϕ′(x∗) =

m
∑

i=1

(〈ai, x
∗〉 − bi)+ · ai = 0n = AT · (A · x∗ − b)+ , (6)

where aTi is the i−th row of the matrix A, i = 1, ...,m. Therefore, in the general
case, our goal is to solve the following equation:

ϕ′(x) =

m
∑

i=1

(〈ai, x〉 − bi)+ · ai = AT · (A · x− b)+ = 0n, where x ∈ Rn. (7)

Let x∗ ∈ X . It is obvious that if A · x∗ − b ≤ 0m holds, then X 6= ∅.
Otherwise, if A · x∗ − b 
 0m, then X = ∅. Let us denote:

fi(x) = 〈ai, x〉 − bi, i ∈ D = {1, . . .m},

and

J0(x) = { i ∈ D | fi(x) = 0} , J−(x) = { i ∈ D | fi(x) < 0} ,

J+(x) = { i ∈ D | fi(x) > 0} , (8)

where fi(x) is introduced to simplify the definitions of the sets J0(x) and J+(x).

According to (6) and the above notations, x∗ ∈ X should satisfy the following
equation.

∑

i∈J0(x∗)∪J+(x∗)

(〈ai, x
∗〉 − bi)+ · ai = 0n. (9)

This, in turn, means that in the general case we should solve the following
equations:

∑

i∈J0(x)∪J+(x)

(〈ai, x〉 − bi)+ · ai = 0n, (10)
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or
∑

i∈J+(x)

(〈ai, x〉 − bi)+ · ai = 0n, (11)

since

〈ai, x〉 − bi = 0, i ∈ J0(x).

Without loss of generality we may denote:

J−(x
∗) = {1, . . . , l} , J0(x

∗) = {l + 1, . . . , p} , J+(x
∗) = {p+ 1, . . . ,m} ,

where l ≤ p ≤ m.

If the rank of a matrix B of size r× n is equal to r, then the pseudo inverse
matrix (operator) B+ may be defined as B+ = BT · (B · BT )−1. We will
denote the quadratic matrix n×n, orthogonally projected on the space of rows

of matrix B as
(

BT
)

q

= BT
(

B ·BT
)−1

· B = B+ · B, and projection on the

orthogonal complement as
(

BT
)⊥

= I−
(

BT
)

q

, where I is the identity matrix of
size n. The main idea exploited in this paper is based on the following Lemma.

Lemma 1 If for every ε > 0 there exists x ∈ Uε(x
∗) such that fi(x) ≥ 0, then

fi(x
∗) ≥ 0.

Proof. The statement of the Lemma immediately follows from the obvious fact
that if fi(x

∗) < 0, then there is an ε > 0 such that fi(x) < 0 for all x ∈ Uε(x
∗),

according to the continuity property of the function fi(x).

Due to the above, in the sufficiently small neighborhood of some fixed point
x∗ ∈ X∗, for every x̄ ∈ Uε(x

∗), the following will hold

J0(x̄) ⊆ J0(x
∗) and J+(x̄) ⊆ J0(x

∗) ∪ J+(x
∗), J−(x̄) ⊆ J0(x

∗) ∪ J−(x
∗).

Conditions, which should be satisfied at the point x∗ are as follows:

∑

i∈J0(x∗)∪J+(x∗)

(〈ai, x
∗〉 − bi)+ · ai =

∑

i∈J0(x∗)∪J+(x∗)

(〈ai, x
∗〉 − bi) · ai = 0n,

(12)

〈ai, x
∗〉 − bi < 0, i ∈ J−(x

∗).

In (12), it is taken into account that

(〈ai, x
∗〉 − bi)+ = 〈ai, x

∗〉 − bi, i ∈ J0(x
∗) ∪ J+(x

∗).

Now, our goal is to correctly define the sets J0(x
∗), J+(x

∗), based on the
information acquired at the point x̄ ∈ Uε(x

∗). Let us denote

J̄0(x̄) := J0(x̄), J̄+(x̄) := J+(x̄), J̄−(x̄) := J−(x̄).
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Let x̄ ∈ Rn:

M(x̄) =







∑

i∈J0(x̄)∪J+(x̄)

(〈ai, x〉 − bi) · ai = 0n, 〈aj , x〉 − bj = 0, j ∈ J̄0(x̄)







.

(13)

Let point z(x̄) be the projection of point x̄ on the set M(x̄). Let us observe
that x∗ ∈M(x̄) if x̄ ∈ Uε(x

∗) and ε is sufficiently small.

Moreover, if at the point z(x̄) the constraints fi(z(x̄)) ≤ 0 for a certain
i ∈ J+(x̄), then we will define the set I− in the following way:

I− =
{

i ∈ J̄+(x̄) | fi(z(x̄)) ≤ 0
}

.

Otherwise, if at the point z(x̄) the constraints fi(z(x̄)) ≥ 0 for a certain
i ∈ J−(x̄), we will define the set I+ in the analogous way:

I+ =
{

i ∈ J−(x̄) | fi(z(x̄)) ≥ 0
}

.

It will always hold that I− ⊆ J0(x
∗) and I+ ⊆ J0(x

∗). It may also happen that
the set I− or I+ will be empty.

Now, we will redefine J0(x̄), J+(x̄) and J−(x̄) as follows:

J0(x̄) := J0(x̄)∪I−∪I+, J+(x̄) := J+(x̄)\I−, J−(x̄) := J−(x̄)\I+. (14)

Next, we will again project point x̄ on the new set M(x̄), see (13), and the new
point z(x̄) will be obtained.

We will use this stage as the basic one in the Main Recursive Step of the
Algorithm 1 when altering the sets J0, J− and J+.

Let A(x̄) and b(x̄) denote the matrix and the vector obtained in this way from
A and b, respectively. The rows of A(x̄) and the coefficients of b(x̄) correspond
to the index set, defined by J0(x̄) ∪ J+(x̄). In this case, equations (10)-(11)
may be rewritten as:

AT (x̄) · (A(x̄) · x− b(x̄)) = 0n (15)

〈ai, x〉 − bi = 0, i ∈ J0(x̄).

Let Ā(x̄) denote the matrix in the equations in (15), corresponding to the
maximum set of linearly independent rows and let b(x̄) denote the corresponding
vector of constant terms in (15).

Equations in (15) may be formulated in the following way:

Ā(x̄) · x− b̄(x̄) = 0n. (16)
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Let:

z(x) = PM(x̄)(x) =
(

ĀT (x̄)
)⊥

· x+ Ā+(x̄) · b̄(x̄) (17)

define the operator of the projection of point x on the set M(x̄).

Let us observe that at the point x∗ the following holds

AT (x∗) · (A(x∗) · x∗ − b(x∗))+ = 0n, (18)

which, in turn, means that:

Ā(x∗) · x∗ − b̄(x∗) = 0n. (19)

3. Gradient method with special step choice

Let us consider the following problem

min
x∈Rn

ϕ(x). (20)

The gradient scheme, solving (20) and ensuring monotonicity of the minimizing
sequence, is as follows

xk+1 = xk − α · ϕ′(xk), α = 1/L, x0 ∈ Rn, k = 0, 1 . . . , (21)

where x0 is an arbitrary point in Rn. Let

X∗ = arg min
x∈Rn

ϕ(x),

where X∗ 6= ∅ and X∗ could be, in the general case, unbounded.

Theorem 2 Let ϕ(x) be a convex function and ϕ(x) ∈ C1,1(Rn), i.e.

∀u, v ∈ Rn : ‖ϕ′(u)− ϕ′(v)‖ ≤ L · ‖u− v‖ ,

where L is the Lipschitz constant and α = 1/L. Then, for the gradient scheme
(21), the following holds

‖xk+1 − y‖ ≤ ‖xk − y‖ , ∀y ∈ X∗, k = 0, 1 . . . , (22)

and

xk → x∗, x∗ ∈ X∗, k → ∞.
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Proof. For convex function ϕ(x) and ∀y ∈ X∗ we have:

〈ϕ′(xk), xk − y〉 ≥ ϕ(xk)− ϕ(y) ≥ ϕ(xk)− ϕ(xk+1) ≥
α

2
· ‖ϕ′(xk)‖

2
, (23)

where for ϕ(x) ∈ C1,1(Rn) the following holds:

ϕ(z)− ϕ(ξ) ≥ 〈ϕ′(z), z − ξ〉 −
L

2
· ‖z − ξ‖2 and

ϕ(xk)− ϕ(xk+1) ≥
α

2
· ‖ϕ′(xk)‖

2
.

Hence, from (23)

−2 · α · 〈ϕ′(xk), xk − y〉+ α2 · ‖ϕ′(xk)‖
2
≤ 0

and therefore for k = 0, 1 . . .

‖xk+1 − y‖
2
= ‖xk − y‖

2
−2 ·α ·〈ϕ′(xk), xk − y〉+α2 ·‖ϕ′(xk)‖

2
≤ ‖xk − y‖

2
.

(24)

The above means that both {‖xk − y‖} and {‖xk‖} are bounded, and therefore

∃ x∗ = lim
j→∞

xkj
∈ X∗.

Hence

ϕ′(x∗) = lim
j→∞

ϕ′(xkj
) = 0 and ϕ(xk)−ϕ(xk+1) ≥

α

2
· ‖ϕ′(xk)‖

2
, k = 0, 1 . . . .

But

lim
k→∞

xk = lim
j→∞

xkj
and hence lim

k→∞
xk = x∗ ∈ X∗.

Remark 3 Property

‖xk+1 − y‖ ≤ ‖xk − y‖ , ∀ y ∈ X∗

is called monotonicity of sequence {xk}. This means that for the gradient method
(21) there will always be a point xk̄, in the arbitrary small neighbourhood of
a certain solution x∗ ∈ X∗. This property will be significantly exploited in
Algorithm 2 providing a solution of the (1).

4. Algorithm for finding the pseudo-solution of (1)

In this section, the algorithm designed to find the pseudo-solution for (1) is
presented. The main idea of this algorithm is based on information, related to
a current point x̄, belonging to the sufficiently small neighborhood of the point
x∗ ∈ X∗. We will also show how to find such a point z(x̄) ∈ X∗.
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Algorithm 1

Initialization Step: For the current point x̄, the sets of indices J0(x̄), J−(x̄)
and J+(x̄) will be defined according to (8). If the set J+(x̄) = ∅, then x̄ is the
solution of (1) and Algorithm 1 is terminated. Otherwise, the Main Recursive

Step will be performed.

Main Recursive Step: Let z(x̄), the projection of point x̄ on the setM(x̄), be
defined according to (17). We will check if the following condition is satisfied:

I+ = ∅ and I− = ∅. (25)

Checking Step: If (25) holds, then z(x̄) ∈ X∗, equation (9) is satisfied; z(x̄)
is the pseudo-solution of (1), as defined in (3), and Algorithm 1 is terminated.
Otherwise, if for certain i ∈ D the condition (25) is violated and i ∈ I+ ∪ I−,
we will define J0(x̄), J+(x̄) and J−(x̄) according to (14), and M(x̄) will be
redefined according to (13), and the Main Recursive Step will be repeated.

Set D is finite, |D| = m, and therefore the number of changes in index sets
J0(x̄), J+(x̄) and J−(x̄) does not exceed m, and finally the point z(x̄), fulfilling
(10), will be established. This means that z(x̄) is the pseudo-solution of (1),
as defined in (3), z(x̄) ∈ X∗. We will repeat the projection procedure no more
than m times as this will be sufficient for finding the point z(x̄) ∈ X∗.

It is of utmost importance that x̄ should belong to the sufficiently small
neighborhood of the point x∗, because otherwise z(x̄) may not satisfy (10). If
this is not the case, it is necessary to find another point x̄ that is closer to x∗.
The way we accomplish this is described below.

Theorem 4 For sufficiently small ε > 0 and for every x̄ ∈ Uε(x
∗) Algorithm 1

provides z∗ = z(x̄) as the solution for

ϕ′(x) = AT (x) · (A(x) · x− b)+ = 0n, (26)

which is equivalent to finding the solution for (10) in the number iterations of
the order 0(m3 · n3).

Proof. Proof is based on the observation that for x̄ belonging to a suffi-
ciently small neighborhood of the point x∗, the constraints fi(x̄) ≥ 0, according
to Lemma 1, will correspond to constraints fi(x

∗) ≥ 0. Therefore

J0(x̄) ∪ J+(x̄) ⊆ J0(x
∗) ∪ J+(x

∗).

Let us determine z(x̄) as the projection of the point x̄ on the set M(x̄), defined
according to (13). It may happen that the set J0(x̄) will be enlarged. However,
the number of iterations, in which J0(x̄) may be enlarged does not exceed m,
the number of elements of the set D. Therefore, at some iteration, (25) will
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be satisfied. This means that z(x̄) satisfies (10) or, equivalently, ϕ′(z(x̄)) = 0n.
This demonstrates that z(x̄) is the pseudo-solution for (1), as defined in (3). The
computational complexity of establishing each projection z(x̄) is of order 0(m2 ·
n3), taking into account the computational effort, related to multiplications of
matrices. The number of iterations does not exceed m, and therefore the overall
computational complexity is of order 0(m3 · n3).

On the basis of the results presented in Section 3, the gradient method for
establishing x̄, belonging to the sufficiently small neighborhood Uε(x

∗) of some
fixed solution x∗ ∈ X∗ of (1) will be described. This gradient method has the
following scheme:

xk+1 = xk − α · ϕ′(xk) (27)

where gradient ϕ′(xk) fulfills the Lipschitz condition

‖ϕ′(xk+1)− ϕ′(xk)‖ ≤ L · ‖xk+1 − xk‖ where L = 2 ·
∥

∥AT ·A
∥

∥ .

Convergence of the gradient method (27) is presented in Theorem 5 below and
is based on Theorem 2.

Theorem 5 Let x0 ∈ Rn and sequence {xk}, k = 0, 1, 2 . . ., be constructed
according to (27), where α = 1/L. Then

xk → x∗, x∗ ∈ X∗, where k → ∞ and ‖xk+1 − y‖ ≤ ‖xk − y‖ ∀ y ∈ X∗.

Proof. Scheme (27) produces a sequence, which will converge to a certain
x∗ ∈ X∗. Moreover, for every sufficiently small ε > 0 there exists k̄ = k(ε) such
that {xk} ∈ Uε(x

∗), for all k ≥ k̄. This, in turn, means that on iteration k̄ the
hypothesis of Theorem 4 will be satisfied and we will obtain a pseudo-solution
of (1).

Now we have all the necessary prerequisites to present the solving algorithm
for (7).

Algorithm 2

Initialization Step: Let k = 0 and x0 be an arbitrary point in Rn.

Main Recursive Step: Let

xk+1 = xk − α · ϕ′(xk).

Checking Step: If z(xk) is the solution for (7), then Algorithm 2 is terminated.
Otherwise, we put k := k + 1 and the Main Recursive Step is repeated.

Theorem 6 There exists a finite k̄ such that z(xk̄) ∈ X∗and z(xk̄) is the solu-
tion for (7).
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Proof. The sequence {xk} is converging to fixed x∗ ∈ X∗ and therefore in
a certain iteration k̄ the hypothesis of Theorem 4 will be satisfied and we will
obtain the solution z∗ = PM(xk̄)

∈ X∗.

Theorem 6 allows us to establish whether (1) has a solution or not.

Corollary 1 If

z∗ ∈ X,

then z∗ is the solution of (1). Otherwise, (1) has no solutions.

5. Concluding remarks and appendix

As it was already mentioned, the locally-polynomial complexity estimate is valid
only if the starting point belongs to a sufficiently small neighborhood of the set
of pseudo-solutions X∗. For reaching such a desired point, the gradient method
(27) is used. There are accelerated gradient methods, see, e.g., Nesterov (1984)
and Poliak (1987), but these methods do not guarantee monotonic convergence
to a set of pseudo-solutions X∗. The method, presented in this paper is mono-
tonically converging to a certain point x∗, x∗ ∈ X∗. It is obvious that the
point x∗ depends on the initial point x0, and therefore the number of iterations
required by the gradient method for entering into the proper neighborhood of
point x∗ depends on the position of the initial point x0. Moreover, the ε radius
of the neighborhood of point x∗, where the gradient method should get to, is,
in the general case, unknown and depends on the specific problem being consid-
ered. However, it appears that we can guarantee a geometric convergence rate
of the gradient method (27) while minimizing piecewise quadratic functions of
the form (4).

Namely, for every strongly convex function ψ(x), the gradient method (27)
has a geometric convergence rate, i.e.

ψ(xk)− ψ∗ ≤ c · δk, where 0 < δ < 1, c > 0,

where c is a constant, which is independent of the size of the problem, but
it depends on the initial point x0. In the general case, for the functions not
convex in the strong sense, there is no proof of the geometric convergence of the
gradient method (27). However, in the case of the function ϕ(x), given by (4),
it is possible to prove the geometric convergence of the gradient method (27).
Let

l(xk) = {x∗ + β · (xk − x∗) , β ≥ 0} and M(sk) = {x∗ + β · sk, β ≥ 0} ,

sk =
xk − x∗

‖xk − x∗‖
.

The theorem presented below proves the strong convexity of the function
ϕ(x) in the cone of convergence.
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Theorem 7 Elements of the sequence {xk} , defined by (27), belong to the cone
of strong convexity of the function ϕ(x), namely ∀ x, y ∈ l(xk) the function
ϕ(x) will be uniformly strongly convex for the sequence {xk}, i.e.

ϕ(λ ·x+(1−λ) · y) ≤ λ ·ϕ(x)+ (1−λ) ·ϕ(y)− γ ·λ · (1−λ) · ‖x− y‖2 (28)

where λ ∈ [0, 1], x, y ∈ l(xk), k = 0, 1 . . ., γ > 0.

Proof. First, it should be noted that because the second derivative of the
function ϕ(x) has a finite number of points of discontinuity in every direction
S̄ ∈ Rn, i.e., on the ray x∗+λ · S̄, then there exists σ > 0 such that on the closed
interval [x∗, x∗ + σ · S̄] the function ϕ(x) has a continuous second derivative,
obviously depending on S̄. Let us assume that the Theorem does not hold, i.e.
there does not exist γ > 0 such that (28) holds. This means that for

l(xk) = {x∗ + β · sk, β ≥ 0}

the following will hold

∂2ϕ(x∗)

∂s2k
= γk → 0 when k → ∞, (29)

or

∂2ϕ(x∗)

∂s2k
=

〈

AT ·A · sk, sk
〉

= γk → 0 when k → ∞.

For vector s = lim
k→∞

sk the following condition
〈

AT · A · s, s
〉

= 0 will hold, or,

due to the construction of ϕ(x),

ϕ(x∗ + β · s) = 0 = ϕ(x∗) = min
∥

∥(A · x− b)+
∥

∥

2
,

where β ∈ [0, β̄], β̄ > 0 is a certain fixed constant. Let x∗k be, obviously locally,
the projection of xk on the set M(s) ∈ X∗. Then, due to sk → s, k → ∞, we
have

‖xk − x∗k‖ = δk · ‖xk − x∗‖ , where δk → 0, k → ∞. (30)

Let us set δk sufficiently small and consider points xk+r , r = 1, 2,. . . . Then,
according to Theorem 5, we have:

‖xk+r − x∗k‖ ≤ ‖xk − x∗k‖ . (31)

On the other hand, according to (30), when r → ∞:

‖xk+r − x∗k‖ ≥ ‖x∗k − x∗‖ − ‖xk+r − x∗‖ ≥

‖xk − x∗‖ − ‖xk − x∗k‖ − ‖xk+r − x∗‖ ≥

1

δk
‖xk − x∗k‖ − ‖xk − x∗k‖ − ‖xk+r − x∗‖ > ‖xk − x∗k‖ .
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This is contradictory to (31) and therefore Theorem 7 holds.

Theorem 7 allows for the estimation of the convergence rate of the gradient
method (27).

Theorem 8 Under the assumptions of Theorem 7 for the sequence {xk} ,
constructed according to (27), the following convergence rates will hold

ϕ(xk)− ϕ∗ ≤ c1 · τ
k and ‖xk − x∗‖ ≤ c2 · τ

k
2 (32)

where τ ∈ (0, 1), c1, c2 > 0, the constants c1, c2 being independent of the value
of k, but depending on the initial point x0.

Proof. Let us denote

µk = ϕ(xk)− ϕ∗.

For the sequence {xk} and q ∈
(

1
2 , 1

)

, the following holds

ϕ(xk)− ϕ(xk+1) ≥ α · q · ‖ϕ′(xk)‖
2
≥ α · q · 〈ϕ′(xk), sk〉

2
=
∂2ϕ(xk)

∂s2k
≥

(33)

≥ α · q · γ2 · (ϕ(xk)− ϕ∗) ,

or, equivalently,

µk − µk+1 ≥ α · q · γ2µk.

Therefore, for τ ∈ (0, 1) the following holds:

µk ≤ c1 · τ
k or, equivalently, ϕ(xk)− ϕ∗ ≤ c1 · τ

k

which proves the first part of (32), while the latter part of (32) follows from the
strong convexity of the function ϕ(x) in the cone of convergence.
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