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Abstract. Nowadays it is more and more common to treat the Internet
as one of the first sources of information. Given key words, different types
of web search engines generate a list of websites ranked by priority (theo-
retically corresponding to the query). The page position on the list depends
on many factors. The method presented herein is a version of a PageRank

algorithm introduced by Google to designate one of them. The PageRank

algorithm ranks a webpage, depending on the number and quality of links
leading to it and thus determines its position on the list. In its simplest
version, the method can operate using just the basic operations on matrices.
This paper presents also the more advanced version based on probabilistic
approach.

1. Introduction

It is now much easier and faster than ever before to acquire information. In-

creasingly, the Internet is regarded as the first (unfortunately sometimes the only)

source of information. We usually use different types of search engines for search-

ing the Web. After typing chosen keywords in the search box, we get in response

a list of websites ranked by priority (theoretically corresponding to the query).

The site position on the list depends on many factors. Most search engines

determine the position of the page on the basis of over 200 parameters associated
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not only with the content placed on it but also taking into account its popularity

on the Internet [1, 2, 4].

The method presented in this article is a simplified version of PageRank al-

gorithm, introduced by Google to designate a single factor used to determine the

page rank on the basis of its interaction with other network resources.

The PageRank algorithm assigns each web site its rank, depending on the

number and quality of links leading to that page.

The idea of the algorithm in terms of linear algebra is presented at the begin-

ning.

2. Linear algebra point of view

The approach presented here does not require advanced mathematical knowl-

edge as it is based almost exclusively on the basic operations on matrices.

Example 11

Suppose that the network consists of just four websites referencing each other

in the manner shown in the Figure 1.

Fig. 1. A simply internet network

The arrows between pages indicate the connections (links) between the web-

sites. Let’s denote rank (as the “validity”) of the website Sj by rj .

1The example comes from [3].
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In the simplest case the rank of the page may be dependent on the number

of links directed to it. It will be true under the assumption that the quality of

the page is directly proportional to the number of sites referring to it2. In the

considered network, it means that r3 = 3, r1 = r4 = 2 and r2 = 1.

Such order is not quite correct. Intuition tells us that a page with single

connection from a popular website should be more important than a page with

several incoming links from rarely visited www.

It seems much more reasonable to take into account not only the number of

links directing to the website but also the rank of pages on which those links were

placed.

The above remark will be taken into account if the page rank is determined

according to the formula:

rk =
∑

j∈Lk

rj

nj

, (1)

where Lk is a set of pages which are pointed to Sk and nj is the total number3 of

outgoing links from the page Sj. According to the previous agreement rj indicates

the rank of the page Sj .

In the network presented on Figure 1, the site S1 is linked from the pages S3

and S4. Thus the formula (1) leads to the following dependence:

r1 =
r3

1
+

r4

2
.

Similarly:

r2 =
r1

3
,

r3 =
r1

3
+

r2

2
+

r4

2
,

r4 =
r1

3
+

r2

2
.

All equations built in such a way form a system of linear equations, which can be

written in a matrix form as:

r = Pr, (2)

2It is similar to the number of citations.
3Note that always nj > 0 because there exists at least one link from Sj to k.
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where r =











r1

r2

r3

r4











, while P =

















0 0 1 1
2

1
3 0 0 0

1
3

1
2 0 1

2

1
3

1
2 0 0

















.

The equation (2) implies that the vector r is the eigenvector of matrix P

corresponding to the eigenvalue λ = 1.

So, every eigenvector (r 6= 0), which satisfies the equation:

(P− I)r = 0. (3)

is the solution of equation (2).

The construction of matrix P causes that it is always a left stochastic matrix

i.e. a non-negative matrix in which sum of elements in each column equals 1. It

is easy to show that every left stochastic matrix has an eigenvalue equal 1. Thus

there is a non-trivial solution of (3) what implies that there are infinitely many

solutions (dependent on parameter t):

r =











r1

r2

r3

r4











=

















2t

2
3 t

3
2 t

t

















.

It is convenient to treat the eigenvector components, which sum up to 1 (t = 6
31 ),

as a standardized measure of the “importance” of the relevant pages. For the

matrix P in the example considered, the corresponding eigenvector components

are:

r1 ≈ 0.387, r2 ≈ 0.129, r3 ≈ 0.29 and r4 ≈ 0.194, (4)

what means that in the network shown in Figure 1, the webpage order is S1, S3,

S4, S2.

3. Probabilistic point of view

Another possible way of PageRank determination is the probabilistic approach.

In this case, a page rank will reflect the probability that a (slightly confused) surfer,

following hyperlinked websites randomly, will eventually land on the testing page.
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The more incoming links to the page, the higher its rank. The rank will also be

bigger if the page gets links from important or frequently visited websites.

Let a set of S1, S2, . . . SN create a simple internet network. Imagine that the

surfer begins to search it from a random page and moves around the network

using the so-called “random walk”: in each successive step, he chooses randomly

the link from his current position and follows it to the next page. It is assumed

that surfer continues his random decision process indefinitely.

To create a formal mathematical model we introduce a sequence of random

variables Xn, n = 1, 2, . . . such that:

X0 – means a website at which the surfer starts his walk,

Xk, k = 1, 2, . . . – means a website that the surfer landed on after the k-th step

of his random walk.

Xn ∈ {S1, S2, . . . SN} for all n = 0, 1, 2, . . .

PageRank of Si is defined as the limit of probabilities that the random variable

Xn will achieve the value Si:

ri = lim
n→∞

P (Xn = Si) (5)

and means the probability, that an infinite random walk will “end” on page Si.

Note that the sequence of random variables defined by the random walk of the

surfer creates a Markov chain. The value of a random variable Xn+1, i.e. the page

that the surfer would reach after (n+1) steps, depends entirely on the page where

the surfer is in his n-th step (i.e. the value of Xn). It means that it does not

depend on what has happened previously. Thus that the probability of transition

from one page onto another in a single step depends only on these sites and is not

dependent on the surfing history or the step number. It has no memory of the

past.

If the pij denote the probability that the surfer will go from Sj to the Si, the

transitive matrix:

P = [pij ] =









p11 p12 . . . p1N
...

pN1 pN2 . . . pNN









(6)

has only nonnegative entries and the sum of elements in each column equals 1.

So it is a left stochastic matrix, matrix of Markov chain process called “Markov

transition matrix”.
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It can be assumed4 that each page S1, S2, . . . SN in the internet network can

be selected by the surfer as the first page of his random walk with the same

probability equaling to 1
N
. Thus, the random variable X0 has discrete uniform

distribution. That is:

pi(0) =
1

N
for all i = 1, . . . , N,

which can be written in vector notation as:

p(0) =









1
N
...
1
N









.

Therefore the vector p(0) represents X0 distribution.

Let us denote distribution of X1 by the vector p(1) =













p1(1)

p2(1)
...

pN (1)













.

The values of its components could be calculated from the formula for the total

probability:

pi(1) = P (X1 = Si) =
N
∑

k=1

P (X1 = Si|X0 = Sk)P (X0 = Sk) =

=

N
∑

k=1

pikpk(0) for all i = 1, 2, . . . , N,

where pik means the probability of transition to Si from Sk. So, these are entries

of the transitive matrix P = [pij ].

In matrix notation this relationship has the following brief form:

p(1) = P · p(0).

4Actually (what is shown in the example), the distribution of X0 can be arbitrary and it has
no effect on the final result.
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The distribution of X2, given by the vector p(2), has the following components:

pi(2) = P (X2 = Si) =

N
∑

k=1

P (X2 = Si|X1 = Sk)P (X1 = Sk) =

=

N
∑

k=1

pikpk(1) for all i = 1, 2, . . . , N,

What in matrix notation produces:

p(2) = P · p(1) = P(P · p(0)) = P2p(0).

Similarly, it could be shown that for any n = 1, 2, . . . the distribution vector

for variable Xn is:

p(n) = P · p(n− 1) = Pn · p(0). (7)

Determination of all web pages ranking on the basis of (5) means finding the

PageRank vector r whose components ri for i = 1, 2, . . . , N are:

ri = lim
n→∞

P (Xn = Si),

that is, according to procedure introduced above

ri = lim
n→∞

pi(n),

or in vector notation: r = lim
n→∞

p(n).

If n tends to infinity the formula (7) becomes:

r = lim
n→∞

p(n) = lim
n→∞

P · p(n− 1) = P · lim
n→∞

p(n− 1),

and so

r = Pr. (8)

Note that this equality is analogous to the relationship (2), which appeared in

a model based on an algebraic approach.

Let’s examine the model of “random walk” for a very simple network, analysed

previously in Example 1.



144 K. Adrianowicz, I. Nowak

Example 1a

Consider the Internet network of websites connected by links as shown in Fig-

ure 1. At the beginning, the surfer randomly selects the home (starting) page. It

may be one of the four sites S1, S2, S3 or S4. Therefore, the probability that the

web surfer will begin his walk from site Sj is as follows:

pj(0) = 0.25 for all j = 1, 2, 3, 4.

We assume that the choice of every link from the Sj site to the next page has

the same probability. Therefore, the probability pij denoting that the surfer goes

from Sj to Si depends only on the number of outgoing from Sj links and is:

pij =
1

the number of outgoing links from Sj

.

For example, in the considered network, p21 = p31 = p41 = 1
3 because the website

S1 has 3 outcoming links to the S2 or S3 or S4.

It is easy to build all probabilities: pij for all i, j = 1, 2, 3, 4 and use them to

build a transition matrix5 P:

P = [pij ] =

















0 0 1 1
2

1
3 0 0 0

1
3

1
2 0 1

2

1
3

1
2 0 0

















. (9)

All likelihoods determined for the network are additionally shown in Figure 2.

The probability pi(1), that after the first step the web surfer will be on the

website Si can be calculated using the formula for total probability. For this

purpose, we propose to use the tree diagram (the graphical form of the total prob-

ability formula) presented in Figure 3, with branches correspond to the respective

probabilities.

5Matrix P is the same as in the formula (2).
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Fig. 2. The transition probabilities

Fig. 3. Total probability calculation tree

The first level of branches (from the top) illustrates the selection of a home

page, while the second one illustrates the transition in every single step from one

website onto another6. Thus,

pi(1) =

4
∑

k=1

pikpk(0) for all i = 1, 2, 3, 4

or in matrix notation

p(1) = P · p(0).

6In order to calculate an appropriate probability, the numbers of stacked along one branch
are multiplied, and the individual branches needed for the calculation are added.
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In the next step, the probabilities of transition to the side Si from Sj are

the same as those presented in the matrix P. Selection of a new landing page

depends only on the number of outbound links from the current page and does

not depend on earlier choices of the surfer. Therefore, according to (7), the vector

of probability distributions in the n-th step has following form:

p(n) = Pn · p(0).

According to the above formula the probability of landing on a particular site

depends on the power of the matrix P and the starting vector p(0). Let’s consider

selected powers of transition matrix P:7

P2 =











0.5 0.75 0 0.5

0 0 0.333333 0.166667

0.333333 0.25 0.33333 0.166667

0.166667 0 0.33333 0.166667











,

P10 =











0.387153 0.389757 0.384838 0.3886

0.128279 0.127315 0.130787 0.129051

0.290895 0.290509 0.289931 0.28941

0.193673 0.192419 0.19444 0.192708











,

P25 =











0.387097 0.387097 0.387097 0.387097

0.129032 0.129032 0.129032 0.129032

0.290323 0.290323 0.290323 0.290323

0.193548 0.193548 0.193548 0.193548











.

It can be observed that with the increase of n, the matrix P stabilizes. Not only do

we observe the values of matrix elements changing less and less between successive

powers, but also the elements in the columns are getting more and more similar

to each other. In the matrix P 25 the columns are identical with accuracy to the

sixth decimal places.

From the considerations above the following conclusions can be extended:

1) The probability of reaching the page Si after appropriate number of steps

(in this example, after at least 25) does not depend on the place where the surfer

began to walk.

7Calculations were performed using Mathematica.
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2) If we find n for which the matrix Pn has the same (with the assumed

accuracy) columns, the approximate PageRank vector r, specifying the rank of

sites, is determined by the (any) column of this matrix.

In this example, it can be assumed that:

r ≈











0.387097

0.129032

0.290323

0.193548











,

what gives the following order of the websites in the network: S1, S3, S4, S2
8.

3) Finally, because at some point Pn ≈ Pn+1, p(n) ≈ p(n + 1) ≈ r, the

relationship (8) is obtained again. The example above can be considered as an

illustration of the classic power method for the determination of the dominant

eigenvector r matrix P.

The conclusions presented above are valid and the method of page position-

ing works well, provided that process presented converges, i.e. that there exist

lim
n→∞

p(n) or lim
n→∞

Pn (both conditions are equivalent). If it is not the case, the

modification of the transitive matrix are necessary, so that the process used for

modified matrix is convergent.

4.Modifications

It can be shown that if the matrix P is stochastic and it meets certain subtle

conditions (detailed description of the necessary conditions can be found in [6]),

there is one vector of PageRank r and the web pages rank is unequivocally deter-

mined. When there is no proper convergence and determination of the rank pages

by these algorithms is not possible, relevant modifications need to be introduced.

This is illustrated by the examples below.

Example 2

Consider a network with so-called “dangling nodes”, i.e. sites with no ourgoing

links. For example, in the network presented in Figure 4, page S3 does not have

any outgoing links.

8Note that the order of pages received here as well as the value of ranks are very similar to
those obtained by Method 1 and shown in (4).
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Fig. 4. Example of network with dandling nod (S3)

In such a situation, the column consisting of all zeros appears in the transitive

matrix P (for the considered network, it is the 3ed column):

P =

















0 0 0 1
2

1
3 0 0 0

1
3

1
2 0 1

2

1
3

1
2 0 0

















.

Obviously, this matrix is not a stochastic one and in its subsequent powers Pn

zero column will always appear.

In this case the solution is quite simply, the matrix needs to be modified by

just replacing with the zero column with the one consisting of all entries equal 1
N

(here 1
4 ). These values reflect the probability of the random (uniform) selection

of the site in the considered network. The new transitive matrix:

P′ =

















0 0 1
4

1
2

1
3 0 1

4 0

1
3

1
2

1
4

1
2

1
3

1
2

1
4 0

















is now a left stochastic matrix and its subsequent powers fairly quickly lead to

a matrix consisting of the same columns (with reasonable accuracy). In the matrix
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P′15 the columns are identical with accuracy to the fifth decimal places:

P′15 =

















0.216495 0.216497 0.216495 0.216494

0.164947 0.164948 0.164948 0.164945

0.371135 0.371134 0.371134 0.371133

0.247423 0.247421 0.247423 0.247422

















.

It means we can assum the vector of PageRank r ≈

















0.216495

0.164947

0.371135

0.247423

















and on this basis

determine the order of pages according to their rank: S3, S4, S1, S2.

In some cases, a stochastic matrix could have more than one eigenvector asso-

ciated with eigenvalue 1. This situation also causes that presented method not to

be convergent. The example of the network in which such a problem occurs will

be discussed below.

Example 3

Consider the network presented in Figure 5.

Fig. 5. A simple Internet network – illustration of Example 3
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In this case, the transitive matrix has the following form

P =



















0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1
2 0 1

0 0 1
2 0 0



















.

The construction of the first two rows and columns causes that for even powers

Pn the first two rows and columns are always the same as in P2:

P2 =



















1 0 0 0 0

0 1 0 0 0

0 0 0.5 0 1

0 0 0.5 0.5 0

0 0 0 0.5 0



















,

while for an odd powers, the first two rows and columns always look like in P.

So there is no chance of convergence, although P is a left stochastic matrix. In

this simple example, it is easy to calculate that one of the eigenvalues of matrix

P is λ = 1 but there are two lineary independent eigenvectors associated with:

r(1) =



















0

0
2
5
2
5
1
5



















oraz r(2) =



















1
2
1
2

0

0

0



















.

That is why, it is not clear (not unequivocal), which vector should be chosen in

order to determine the ranking of sites.

The reason of the situation shown in Example 3 is that the network in Figure 5

in fact consists of two unconnected subnets9. Of course, such a situation in reality

occurs often.

In this case, the modification (described in details in [3]) of the presented

method needs to be used.

9If the network W consists of r subnets W1, . . . ,Wr, the number of linearly independent
eigenvectors associated with an eigenvalue λ = 1 is > r.
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In order to determine the validity of websites, the matrix of weighted averages

is applied instead of matrix P:

M = (1 −m) ·P+m · S (10)

where 0 6 m 6 1,10 and S is a matrix of size n× n, whose all elements are equal

to 1
n
.

S is left stochastic matrix, therefore it has an eigenvalue 1 and, as can be easily

checked, it has one eigenvector associated with it (which sums up to 1). Note that

the matrix M is also a left stochastic one.

Paper [3] presents the proof that for m ∈ (0, 1〉 matrix M has always only one

eigenvector associated with λ = 1.

Let’s apply this modification to Example 3.

According to formula (10) and assuming m = 0.15:

M = 0.85 ·A+ 0.15 · S =















0.03 0.88 0.03 0.03 0.03

0.88 0.03 0.03 0.03 0.03

0.03 0.03 0.03 0.88 0.03

0.03 0.03 0.455 0.03 0.88

0.03 0.03 0.455 0.03 0.03















.

Now the eigenvector of matrix M, related to the value λ = 1 and summing up

to 1, needs to be determined. In this simple case, it can be done by solving the

matrix equation:

M · r = r.

The search solution is:

r =















r1

r2

r3

r4

r5















=















0.2

0.2

0.232674

0.23844

0.128886















,

therefore, the order of pages in the network shown in Figure 5 is: S4, S3, S1 and

S2, S5.

10According to [5], Google was originally using m = 0.15.
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5. Conclusions

The paper presents PageRank method, which was developed and introduced

by Google firm as one of the tools for positioning the websites.

Two approaches, algebraic and probabilistic were discussed. Both of them are

use to assess the level in which the website match the user’s inquiry. The main goal

of the work was to demonstrate how mathematical methods can be applied to build

the so-called transitive matrix that models the surfer’s behaviour in a single step

of his Internet walk. This matrix is often a stochastic one. Subsequent decisions

taken by the surfer create a sequence of states building a Markov chain. If this

sequence is convergent, the sequence limit enables unequivocal determination of

website ranking.

Due to the structure of the Internet network, the created sequence is often

not convergent. Depending on the reasons behind non-convergence, a relatively

modified transition matrix is applied for positioning.

The work also discussed the modifications required in case of dangling nodes

and the networks consisting of disjoint sub-networks, with their operations illus-

trated with simple examples.
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