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Abstract. We consider the Darboux problem for the hyperbolic partial functional differ-
ential equation with infinite delay. We deal with generalized (in the “almost everywhere”
sense) solutions of this problem. We prove a theorem on the global convergence of successive
approximations to a unique solution of the Darboux problem.
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1. INTRODUCTION

In this paper we deal with the following Darboux problem for the second order partial
functional differential equation

Dxyz(x, y) = f
(
x, y, z(x,y)

)
, (x, y) ∈ G, (1.1)

z(x, y) = φ(x, y), (x, y) ∈ E0, (1.2)

where

G = [0, a]× [0, b], E0 = E \ ((0, a]× (0, b]) and E = (−∞, a]× (−∞, b].

In the above problem f : G × B → R, φ : E0 → R are given functions. In the
right-hand side of (1.1) the functional dependence is described by the operator
G 3 (x, y) 7→ z(x,y) ∈ B, where z(x,y) : (−∞, 0]2 → R is a function defined by the
formula z(x,y)(s, t) = z(x + s, y + t), (s, t) ∈ (−∞, 0]2. Thus B is a vector space of
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real-valued functions defined in (−∞, 0]2. The space B is equipped with a seminorm
and satisfies some suitable axioms, which will be given in Section 2.

The axiomatic approach and the model of functional dependence which we use
in this paper is well known for ordinary functional differential equations. Systems of
axioms most often used in this case were given in [9, 11, 14] (see also [4, 10] with a
rich bibliography concerning functional differential equations with infinite delay). We
adapt the system of [9] to partial functional differential equations.

Convergence of successive approximations for ordinary functional differential equa-
tions as well as for integral functional equations with infinite delay has been proved
by Shin [12,13]. In the case of ordinary differential equations with finite delay, conver-
gence of successive approximations follows from the results of Chen [3]. The fact that
the convergence of successive approximations is a generic property has been proved
for equations with finite delay by De Blasi and Myjak [7], while for equations with
infinite delay by Faina [8].

The Darboux problem for partial functional differential equtions with infinite de-
lay has been studied in [5, 6], both papers concern classical solutions. The axiomatic
approach for such equations was introduced in [5], where the existence theorem was
proved by means of the measure of noncompactness technique. Some existence results
for equations involving first order derivatives of an unknown function were obtained
in [6] via the Banach or the Schauder fixed-point theorems. The Darboux problem
for fractional order partial functional differential equations with infinite delay has
been studied in [1, 2]. The existence and uniqueness results in these papers are ob-
tained by using the Banach fixed-point theorem or some nonlinear alternatives of the
Leray-Schauder theorem.

In this paper we get the global convergence of successive appoximations as well
as the uniqueness of solutions for the Darboux problem (1.1), (1.2). We deal with
generalized solutions, i.e. z : (−∞, a] × (−∞, b] → R is a solution of (1.1) if it is
absolutely continuous and satisfies this equation almost everywhere on G. In Section 3
we prove a comparison theorem and with the help of it we get the main result in
Section 4. The method of the proof follows the ideas of Shin [12].

2. THE PHASE SPACE B

Let R− = (−∞, 0] and R+ = [0,+∞). Assume that B is a linear space of functions
mapping R2

− into R equipped with a seminorm | · |B. If in a classical definition of
continuity we replace a norm with the seminorm | · |B then we may discuss continuity
of a function with arguments or values in B.

For any (ξ, η) ∈ G denote the rectangle [ξ, a] × [η, b] by Gξη and its “Darboux-
-boundary”, where initial values are prescribed in the classical case, by Γξη = ([ξ, a]×
{η}) ∪ ({ξ} × [η, b]).

Suppose that B satisfies the following axioms:

(A1) If z : E → R and (ξ, η) ∈ G are such that z is continuous on Gξη and z(s,t) ∈ B
for all (s, t) ∈ Γξη then for any (x, y) ∈ Gξη we have z(x,y) ∈ B.
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(A2) If z and (ξ, η) are such as in (A1) then the function Gξη 3 (x, y) 7→ z(x,y) ∈ B
is continuous.

(A3) There is a constant H ≥ 0, a continuous function K : R2
+ → R+ and a locally

bounded function M : R2
+ → R+ satisfying the following conditions: if z and

(ξ, η) are as in (A1) then for any (x, y) ∈ Gξη we have:

(i) |z(x, y)| ≤ H|z(x,y)|B,
(ii) |z(x,y)|B ≤ K(x− ξ, y − η) sup

(s,t)∈[ξ,x]×[η,y]

|z(s, t)|+

+M(x− ξ, y − η) sup
(s,t)∈([ξ,x]×{η})∪({ξ}×[η,y])

|z(s,t)|B.

Remark 2.1. Axioms (A1)–(A3) that we consider for partial functional differen-
tial equations are adapted from those introduced by Hale and Kato [9] for ordinary
functional differential equations.

Now, we show examples of the phase space B satisfying the axioms (A1)–(A3).

Example 2.2. Let B be the set of all functions φ : R2
− → R which are continuous

on [−a0, 0]× [−b0, 0], a0, b0 ≥ 0, with the seminorm

|φ|B = sup{|φ(s, t)| : (s, t) ∈ [−a0, 0]× [−b0, 0]}.

Then H = K = M = 1, and the quotient space B̂ = B/| · |B is isometric to the
space C([−a0, 0]× [−b0, 0],R) of all continuous functions from [−a0, 0]× [−b0, 0] into
R with the supremum norm. This means that functional differential equations with
finite delay are included in our axiomatic model.

Example 2.3. Let Cγ , γ ∈ R, be the set of all continuous functions
φ : R2

− → R for which a limit lim|(s,t)|→∞ eγ(s+t)φ(s, t) exists, with the norm |φ|Cγ =

sup{eγ(s+t)|φ(s, t)| : (s, t) ∈ R2
−}. Then we have H = 1, K(x, y) = max{e−γ(x+y), 1}

and M(x, y) = e−γ(x+y) max{eγx, eγy, 1}.

Example 2.4. Let a0, b0, γ ≥ 0 and let

|φ|CLγ = sup{|φ(s, t)| : (s, t) ∈ [−a0, 0]× [−b0, 0]}+

0∫
−∞

0∫
−∞

eγ(s+t)|φ(s, t)|dsdt

be the seminorm for the space CLγ of all functions φ : R2
− → R which are continuous

on [−a0, 0]× [−b0, 0], measurable on (−∞,−a0]× (−∞, 0]∪ (−∞, 0]× (−∞,−b0], and
such that |φ|CLγ < +∞. Then

H = 1, K(x, y) =

0∫
−x

0∫
−y

eγ(s+t)dsdt,

M(x, y) = max{1, 2e−γ(x+y) max(eγx, eγy)}.
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3. A COMPARISON THEOREM

We say that ω : Gξη × [0, 2r]→ R+ satisfies the Carathéodory conditions if:

(i) ω(·, ·, u) is measurable for all u ∈ [0, 2r],
(ii) ω(x, y, ·) is continuous for almost all (x, y) ∈ Gξη,
(iii) there is a Lebesgue integrable function µ : Gξη → R+ such that

ω(x, y, u) ≤ µ(x, y)

for all u ∈ [0, 2r] and almost all (x, y) ∈ Gξη.

Having fixed (ξ, η) ∈ G let us consider the integral equation

v(x, y) = K(x− ξ, y − η)

x∫
ξ

y∫
η

ω(s, t, v(s, t))dsdt (3.1)

for (x, y) ∈ Gξη, whereK(x, y) is as in (A3) and ω : Gξη×[0, 2r]→ R+ is a comparison
function satisfying the above Carathéodory conditions.

For any c ∈ [0, a] and d ∈ [0, b] write S(c, d) = G \ ((c, a] × (d, b]). We deal with
continuous solutions of the above integral equation on Gξη ∩S(c, d). In other words a
solution of (3.1) is a function which belongs to the space C(Gξη ∩ S(c, d), [0, 2r]). In
the sequel we will write Ccd instead of C(Gξη ∩ S(c, d), [0, 2r]) for simplicity.

Theorem 3.1. Suppose that ω : Gξη × [0, 2r] → R+ is a comparison function satis-
fying the Carathéodory conditions and such that ω(x, y, ·) is nondecreasing for almost
all (x, y) ∈ Gξη. Then the following conditions hold:

(i) There are constants c ∈ (ξ, a], d ∈ (η, b] such that for any ε ∈ [0, r) equation

v(x, y) = ε+K(x− ξ, y − η)

x∫
ξ

y∫
η

ω(s, t, v(s, t))dsdt (3.2)

has a solution v(x, y; ε) in Ccd.
(ii) If 0 ≤ ε1 < ε2 < r, then v(x, y; ε1) < v(x, y; ε2) on Gξη ∩ S(c, d).
(iii) There exists a solution ṽ(x, y) of equation (3.1) for which we have

limε→0+ v(x, y; ε) = ṽ(x, y) uniformly on Gξη ∩ S(c, d) and that it is a maximal
solution of (3.1).

Proof. (i) There are c ∈ (ξ, a] and d ∈ (η, b] such that if (x, y) ∈ Gξη ∩ S(c, d) then

sup
u∈Ccd

x∫
ξ

y∫
η

ω(s, t, u(s, t))dsdt ≤ r

Kcd
, (3.3)

where
Kcd = sup{K(x− ξ, y − η) : (x, y) ∈ Gξη ∩ S(c, d)}.
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Obviously Ccd is a closed bounded convex subset of the Banach space
C(Gξη ∩ S(c, d),R). Define the operators

(Tεu)(x, y) = ε+ (T u)(x, y), (T u)(x, y) = K(x− ξ, y − η)(Wu)(x, y)

and
(Wu)(x, y) =

x∫
ξ

y∫
η

ω(s, t, u(s, t))dsdt

for (x, y) ∈ Gξη ∩ S(c, d) and u ∈ Ccd. Then from the Carathéodory condition (iii) it
follows that

|(Wu)(x, y)| ≤
c∫
ξ

d∫
η

µ(s, t)dsdt,

|(Wu)(x, y)− (Wu)(x̄, ȳ)| ≤
∣∣∣∣
c∫
ξ

y∫
ȳ

µ(s, t)dsdt

∣∣∣∣+

∣∣∣∣
x∫
x̄

d∫
η

µ(s, t)dsdt

∣∣∣∣,
which means that the set {Wu : u ∈ Ccd} is uniformly bounded and equicontinuous
on Gξη ∩ S(c, d). Hence, by the Arzelà-Ascoli lemma this set is relatively compact in
C(Gξη ∩ S(c, d),R). Since K(x, y) is continuous, it is clear that also {Tεu : u ∈ Ccd}
is relatively compact in C(Gξη ∩ S(c, d),R). From condition (3.3) we obtain that
TεCcd ⊂ Ccd for ε ∈ [0, r).

We show that the operator Tε : Ccd → Ccd is continuous. Indeed, if {u(n)} is any
sequence in Ccd such that u(n) → u0 then, by the Lebesgue dominated convergence
theorem we have (Wu(n))(x, y)→ (Wu0)(x, y) for each (x, y) ∈ Gξη∩S(c, d). Since the
sequence {Wu(n)}∞n=1 is equicontinuous, this convergence is uniform on Gξη ∩S(c, d).
Analogously, the equicontinuity of {Tεu(n)} yields that (Tεu(n))(x, y) → (Tεu0)(x, y)
uniformly on Gξη ∩ S(c, d). Therefore, by the Schauder fixed point theorem, there
exists a fixed point of Tε in Ccd, which obviously is a solution of equation (3.2).

(ii) Since v(ξ, y; ε1) = v(x, η; ε1) = ε1 < ε2 = v(ξ, y; ε2) = v(x, η; ε2) our claim
follows from the monotonicity of ω with respect to the last variable.

(iii) Let

w(x, y; ε) =

x∫
ξ

y∫
η

ω(s, t, v(s, t; ε))dsdt.

Analogously as in (i) we may prove that the sets {w(x, y; ε) : ε ∈ [0, r)} and conse-
quently {v(x, y; ε) : ε ∈ [0, r)} are equicontinuous. From (ii) it follows that the limit
limε→0+ v(x, y; ε) = ṽ(x, y) exists and by the equicontinuity of {v(x, y; ε) : ε ∈ [0, r)}
it is uniform on Gξη ∩ S(c, d). Obviously ṽ(x, y) is a maximal solution of (3.1).

Having fixed (ξ, η) ∈ G consider the following integral inequality:

z(x, y) ≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

ω(s, t, z(s, t))dsdt (3.4)

for (x, y) ∈ Gξη.



332 Tomasz Człapiński

Theorem 3.2. Suppose that ω : Gξη × [0, 2r] → R+ is a comparison function satis-
fying the Carathéodory conditions such that ω(x, y, ·) is nondecreasing for almost all
(x, y) ∈ Gξη. Then for any c ∈ (ξ, a] and d ∈ (η, b], v(x, y) ≡ 0 is the only solution of
equation (3.1) in Ccd if and only if z(x, y) ≡ 0 is the only solution of inequality (3.4)
in Ccd.

We omit the proof of the above theorem which follows from Theorem 3.1 and from
the monotonicity of ω.

4. SUCCESSIVE APPROXIMATIONS

Let X denote the set of all functions φ : E0 → R such that φ(s,t) ∈ B for (s, t) ∈ E0∩G,
and φ is continuous on E0∩G. We say that f : G×B→ R satisfies the Carathéodory
conditions if:

(i) f(·, ·, w) is measurable for all w ∈ B,
(ii) f(x, y, ·) is continuous for almost all (x, y) ∈ G,
(iii) there is a Lebesgue integrable function m : G→ R+ such that

|f(x, y, w)| ≤ m(x, y) for all w ∈ B and almost all (x, y) ∈ G.

Observe that z is a solution of the Darboux problem (1.1), (1.2), with
f : G×B→ R satisfying the Carathéodory conditions and φ ∈ X, if and only if
it satisfies the integral equation

z(x, y) =


φ(x, y) for (x, y) ∈ E0,

φ(x, 0) + φ(0, y)− φ(0, 0)+

+

x∫
0

y∫
0

f
(
s, t, z(s,t)

)
dsdt for (x, y) ∈ G.

(4.1)

Therefore, we define the successive approximations of problem (1.1), (1.2) as follows:

z(0)(x, y) =

{
φ(x, y) for (x, y) ∈ E0,

φ(x, 0) + φ(0, y)− φ(0, 0) for (x, y) ∈ G,

z(n+1)(x, y) =


φ(x, y) for (x, y) ∈ E0,

φ(x, 0) + φ(0, y)− φ(0, 0)

+

x∫
0

y∫
0

f
(
s, t, z

(n)
(s,t)

)
dsdt for (x, y) ∈ G.

For any φ ∈ X we denote by Sφ the space of all functions u : E → R such that
u(x, y) = φ(x, y) for all (x, y) ∈ E0 and u is continuous on G.
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Assumption 4.1. Let ω : Gξη × [0, 2r] → R+, where (ξ, η) ∈ G, be a comparison
function satisfying the Carathéodory conditions such that ω(x, y, ·) is nondecreasing
for almost all (x, y) ∈ Gξη. Furthermore suppose that v(s, t) ≡ 0 is the only function
in C(Gξη ∩ S(c, d), [0, 2r]) satisfying the integral equation (3.1), with any c ∈ (ξ, a],
d ∈ (η, b].

Theorem 4.2. Let f : G × B → R satisfy the Carathéodory conditions, B satisfy
axioms (A1)–(A3) and φ ∈ X. Furthermore, suppose that for any (ξ, η) ∈ G there
exist a constant r > 0 and a comparison function ω : Gξη × [0, 2r] → R+ satisfying
Assumption 4.1 such that the inequality

|f(x, y, u(x,y))− f(x, y, v(x,y))| ≤ ω(x, y, |u(x,y) − v(x,y)|B) (4.2)

holds for all (x, y) ∈ Gξη and u, v ∈ Sφ such that |u(x,y) − v(x,y)|B ≤ 2r. Then the
successive approximations z(n) are well defined and converge to a unique solution of
problem (1.1), (1.2) uniformly on G.

Proof. Since f satisfies the Carathéodory conditions the successive approximations are
well defined. Furthermore, the sequences

{
z

(n)
(x,y)

}
and

{
z(n)(x, y)

}
are equicontinuous

on G. Let

τ = sup

{
θ ∈ [0, 1] :

{
z(n)(x, y)

}
converges uniformly on S(θa, θb)

}
.

Since the sequence
{
z(n)(x, y)

}
is constant on E0 = S(0, 0), the above supremum is

well defined. If τ = 1, then we have the global convergence of successive approxima-
tions. Suppose that τ < 1 and put ξ = τa and η = τb. This means that the sequence
{z(n)(x, y)} converges uniformly on G \ Gξη Since this sequence is equicontinuous it
converges uniformly on S(ξ, η) to a continuous function z̃(x, y). If we prove that there
are c ∈ (ξ, a] and d ∈ (η, b] such that {z(n)(x, y)} converges uniformly on S(c, d), this
will yield a contradiction.

Put

z(x, y) =

{
φ(x, y) for (x, y) ∈ E0,

z̃(x, y) for (x, y) ∈ S(ξ, η).

By force of condition (A3)-(ii) we see that limn→∞ z
(n)
(s,t) = z(s,t) for each (s, t) ∈ Γξη

and the convergence is uniform with respect to (s, t) ∈ Γξη. There exists a constant
r > 0 and a comparison function ω : Gξη × [0, 2r] → R+ satisfying inequality (4.2).
There exist c ∈ (ξ, a], d ∈ (η, b] and n0 ∈ N such that

∣∣z(n)
(x,y) − z

(m)
(x,y)

∣∣
B
≤ 2r for all

(x, y) ∈ Gξη ∩S(c, d) and n,m ≥ n0. To simplfy the notation we assume that n0 = 1.
For any (x, y) ∈ Gξη ∩ S(c, d) put

v(m,n)(x, y) =
∣∣∣z(m)

(x,y) − z
(n)
(x,y)

∣∣∣
B

and v(k)(x, y) = sup
n,m≥k

v(m,n)(x, y).

Since the sequence {v(k)(x, y)} is nonincreasing, it is convergent to a function v(x, y)
for each (x, y) ∈ Gξη ∩ S(c, d). From the equicontinuity of {v(k)(x, y)}, it follows
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that limk→∞ v(k)(x, y) = v(x, y) uniformly on Gξη ∩S(c, d). Furthermore, for (x, y) ∈
Gξη ∩ S(c, d) and m,n ≥ k we have

v(m,n)(x, y) =
∣∣z(m)

(x,y) − z
(n)
(x,y)

∣∣
B
≤

≤ K(x− ξ, y − η) sup
(s,t)∈[ξ,x]×[η,y]

|z(m)(s, t)− z(n)(s, t)|+

+M(x− ξ, y − η) sup
(s,t)∈([ξ,x]×{η})∪({ξ}×[η,y])

∣∣z(m)
(s,t) − z

(n)
(s,t)

∣∣
B
,

(4.3)

by condition (A3)-(ii). We also have the estimate

sup
(s,t)∈[ξ,x]×[η,y]

|z(m)(s, t)− z(n)(s, t)| ≤
x∫

0

y∫
0

∣∣f(s, t, z(m−1)
(s,t)

)
− f

(
s, t, z

(n−1)
(s,t)

)∣∣dsdt.
(4.4)

The integral on [0, x] × [0, y] can be divided into two integrals on [ξ, x] × [η, y] and
([0, x]× [0, y]) ∩ S(ξ, η). The latter can be estimated by

δ(k−1) = sup
m,n≥k

∫ ∫
S(ξ,η)

∣∣f(s, t, z(m−1)
(s,t)

)
− f

(
s, t, z

(n−1)
(s,t)

)∣∣dsdt.
If we futhermore set

ε(k) = sup
m,n≥k

sup
(s,t)∈Γξη

∣∣z(m)
(s,t) − z

(n)
(s,t)

∣∣
B
,

Kcd = sup{K(x− ξ, y − η) : (x, y) ∈ Gξη ∩ S(c, d)},
Mcd = sup{M(x− ξ, y − η) : (x, y) ∈ Gξη ∩ S(c, d)},

then by (4.2), (4.3) and (4.4) we obtain for (x, y) ∈ Gξη ∩ S(c, d) the estimate

v(m,n)(x, y) =
∣∣z(m)

(x,y) − z
(n)
(x,y)

∣∣
B
≤

≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

∣∣f(s, t, z(m−1)
(s,t)

)
− f

(
s, t, z

(n−1)
(s,t)

)∣∣dsdt+
+Kcdδ

(k−1) +Mcd sup
(s,t)∈Γξη

∣∣z(m)
(s,t) − z

(n)
(s,t)

∣∣
B
≤

≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

ω
(
s, t, v(m,n)(s, t)

)
dsdt+

+Kcdδ
(k−1) +Mcdε

(k),

from which it follows that

v(k)(x, y) ≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

ω
(
s, t, v(k−1)(s, t)

)
dsdt+Kcdδ

(k−1) +Mcdε
(k).
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Since limk→∞ δ(k) = limk→∞ ε(k) = 0, by the Lebesgue dominated convergence theo-
rem we get

v(x, y) ≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

ω(s, t, v(s, t))dsdt.

By Theorem 3.2 and condition (iii) in Assumption 4.1, we have v(x, y) ≡ 0 on
Gξη ∩ S(c, d), which yields that limk→∞ v(k)(x, y) = 0 uniformly on Gξη ∩ S(c, d).
Thus {z(k)

(x,y)}
∞
k=1 is a Cauchy sequence on Gξη ∩ S(c, d). By condition (A3)-(i), we

have |z(m)(x, y)− z(n)(x, y)| ≤ H
∣∣z(m)

(x,y)− z
(n)
(x,y)

∣∣
B

and consequently {z(k)(x, y)}∞k=0 is
uniformly convergent on Gξη ∩ S(c, d) which yields the contradiction.

Thus {z(k)(x, y)} converges uniformly on G to a continuous function z∗(x, y). By
the Carathéodory condition (iii) and the Lebesgue dominated convergence theorem
we get

lim
k→∞

x∫
0

y∫
0

f
(
s, t, z

(k)
(x,y)

)
dsdt =

x∫
0

y∫
0

f
(
s, t, z∗(x,y)

)
dsdt,

for each (x, y) ∈ G. This yields that z∗ is a solution of equation (4.1) which means a
solution of problem (1.1), (1.2).

Finally, we show the uniqueness of solutions of problem (1.1), (1.2). Let v and w
be two solutions of (4.1). As above put

τ = sup
{
θ ∈ [0, 1] : v(x, y) = w(x, y) for (x, y) ∈ G \ S(θa, θb)

}
,

and suppose that τ < 1. If we set ξ = τa and η = τb then there exist a constant
r > 0 and a comparison function ω : Gξη × [0, 2r] → R+ satisfying inequality (4.2).
We choose c ∈ (ξ, a] and d ∈ (η, b] such that

|v(x,y) − w(x,y)|B ≤ 2r for (x, y) ∈ Gξη ∩ S(c, d).

Then for all (x, y) ∈ Gξη ∩ S(c, d) we obtain

|v(x,y) − w(x,y)|B ≤ K(x− ξ, y − η) sup
(s,t)∈[ξ,x]×[η,y]

|v(s, t)− w(s, t)| ≤

≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

∣∣f(s, t, v(s,t)

)
− f

(
s, t, w(s,t)

)∣∣dsdt ≤
≤ K(x− ξ, y − η)

x∫
ξ

y∫
η

ω
(
s, t, |v(s,t) − w(s,t)|B

)
dsdt.

By Theorem 3.2, we have |v(x,y) − w(x,y)|B ≡ 0 on Gξη ∩ S(c, d) and by condition
(A3)-(i) we get v(x, y) ≡ w(x, y) on Gξη ∩ S(c, d), which yields a contradiction. Thus
τ = 1 and the solution of (4.1) is unique on G. This completes the proof of Theo-
rem 4.2.
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5. EXAMPLES

Finally we present two simple equations that are examples of (1.1).

Example 5.1. Let B be the space Cγ defined in Example 2.3 with γ < 0. In this
case we have K(x, y) = e−γ(x+y). Suppose that φ : E0 → R is any continuous function
such that φ(s,t) ∈ Cγ for (s, t) ∈ E0 ∩G. Consider the functional differential equation

Dxyz(x, y) =
(xy)−

1
2√

|z(x2 ,
y
2 )|+ 1

, (x, y) ∈ G. (5.1)

If we define f : G × Cγ → R by the formula f(x, y, w) = (xy)−
1
2√

|w(− x2 ,−
y
2 )|+1

then f

satisfies the Carathéodory conditions with m : G→ R+ defined by m(x, y) = (xy)−
1
2 .

Furthermore, for any (x, y) ∈ G and w, w̄ ∈ Cγ we have

|f(x, y, w)− f(x, y, w̄)| ≤
∣∣∣ (xy)−

1
2√

|w(−x2 ,−
y
2 )|+ 1

− (xy)−
1
2√

|w̄(−x2 ,−
y
2 )|+ 1

∣∣∣ ≤
≤ 1

2 (xy)−
1
2

∣∣w̄(−x2 ,−
y
2 )− w(−x2 ,−

y
2 )
∣∣ ≤ 1

2 (xy)−
1
2 eγ( x2 + y

2 )|w̄ − w|Cγ .

This means that condition (4.2) in Theorem 4.2 holds with any (ξ, η) ∈ G, r > 0
and a comparison function ω : Gξη × [0, 2r] → R+ given by the formula ω(x, y, v) =
1
2 (xy)−

1
2 eγ( x2 + y

2 )v. We see that ω satisfies the Carathéodory conditions with µ : Gξη →
R+ given by µ(x, y) = (xy)−

1
2 eγ( x2 + y

2 )r. Comparison integral equation (3.1) in our
case takes the form

v(x, y) = e−γ(x−ξ+y−η)

x∫
ξ

y∫
η

1
2 (st)−

1
2 eγ( s2 + t

2 )v(s, t)dsdt. (5.2)

Since ω is nondecreasing with respect to v, equation (5.2) has only a zero solution by
Theorem 3.2 and consequently the conclusion of Theorem 4.2 holds for problem (5.1),
(1.2).

Example 5.2. Let B be the space CLγ defined in Example 2.4 with a0 = b0 = 0
and γ > 0. Then we have

K(x, y) =

0∫
−x

0∫
−y

eγ(s+t)dsdt =
1

γ2
(1− e−γx)(1− e−γy).

Let φ : E0 → R be an initial function such that φ(s,t) ∈ CLγ for (s, t) ∈ E0 ∩G, and
φ is continuous on E0 ∩G. Consider the differential integral equation

Dxyz(x, y) = xy sin
z(x, y)

xy
+

+ (1 + e−γ(x+y))

x∫
−∞

y∫
−∞

e−γ(x−s+y−t) sin z(s, t)dsdt,

(5.3)
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where (x, y) ∈ G. We define f : G× CLγ → R by the formula

f(x, y, w) = xy sin
w(0, 0)

xy
+ (1 + e−γ(x+y))

0∫
−∞

0∫
−∞

eγ(s+y) sinw(s, t)dsdt.

We see that f satisfies the Carathéodory conditions with m : G → R+ defined by
m(x, y) = xy + 1

γ2 (1 + e−γ(x+y)). For any (x, y) ∈ G and w, w̄ ∈ CLγ we also have

|f(x, y, w)− f(x, y, w̄)| ≤

≤ xy
∣∣∣sin w(0, 0)

xy
− sin

w̄(0, 0)

xy

∣∣∣+
+ (1 + e−γ(x+y))

0∫
−∞

0∫
−∞

eγ(s+t)| sinw(s, t)− sin w̄(s, t)|dsdt ≤

≤ |w(0, 0)− w̄(0, 0)|+ (1 + e−γ(x+y))

0∫
−∞

0∫
−∞

eγ(s+t)|w(s, t)− w̄(s, t)|dsdt ≤

≤ (1 + e−γ(x+y))|w − w̄|CLγ .

From the above estimate we get that condition (4.2) in Theorem 4.2 holds for any
(ξ, η) ∈ G, r > 0 and a comparison function ω(x, y, v) = (1 + e−γ(x+y))v, which
satisfies the Carathéodory conditions with µ(x, y) = 2(1 + e−γ(x+y))r. Comparison
integral equation (3.1) now takes the form

v(x, y) =
1

γ2
(1− e−γ(x−ξ))(1− e−γ(y−η))

x∫
ξ

y∫
η

(1 + e−γ(s+t))v(s, t)dsdt.

Since ω is nondecreasing with respect to v, the above equation has only a zero solution
by Theorem 3.2. Thus conclusion of Theorem 4.2 holds for problem (5.3), (1.2).
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