PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wireless Capsule Endoscope Localization with Phase Detection Algorithm and Simplified Human Body Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wireless endoscopic capsules can transmit the picture of the inside of the digestive tract to the external receiver for the purpose of gastrointestinal diseases diagnose. The localization of the capsule is needed to correlate the picture of detected anomalies with the particular fragment of intestine. For this purpose, the analysis of wireless transmission parameters can be applied. Such methods are affected by the impact of the human body on the electromagnetic wave propagation that is specific to the anatomy of individual person. The article presents the algorithm of localization of endoscopic capsules with wireless transmitter based on the detection of phase difference of received signals. The proposed algorithm uses simplified human body models that can change their dielectric properties in each iteration to improve the location of the capsule endoscope. Such approach allows to reduce localization error by around 12 mm (15%) and can by used for patients of different physique without the need of the numerical models of individual body.
Rocznik
Strony
45--51
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wytr.
Twórcy
  • Lodz University of Technology
  • Lodz University of Technology
Bibliografia
  • [1] D. K. Iakovidis, E. Spyrou, D. Diamantis and I. Tsiompanidis, "Capsule endoscope localization based on visual features," 13th IEEE International Conference on BioInformatics and BioEngineering, Chania, 2013, pp. 14.doi: 10.1109/BIBE.2013.6701570.
  • [2] L. Liu, C. Hu, W. Cai and M. Q. -. Meng, "Capsule endoscope localization based on computer vision technique," 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 2009, pp. 3711-3714. doi: 10.1109/IEMBS.2009.5334803.
  • [3] V. Cavlu and P. Brennan, "Determining the Position and Orientation of In-body Medical Instruments Using Near-Field Magnetic Field Mapping," in IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. doi: 10.1109/JERM.2019.2914402.
  • [4] Dey, Nilanjan & Ashour, Amira S. & Fuqian, Shi & Sherratt, Robert. (2017). Wireless Capsule Gastrointestinal Endoscopy: Direction-of Arrival Estimation Based Localization Survey. IEEE Reviews in Biomedical Engineering. PP. 10.1109/RBME.2017.2697950..
  • [5] Andreuccetti, D.; Fossi, R.; Petrucci, C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz; IFAC-CNR: Florence, Italy, 1997; Available online: http://niremf.ifac.cnr.it/tissprop/ (accessed on 20 August 2019).
  • [6] Jeong, S., Kang, J., Pahlavan, K. et al. Int J Wireless Inf Networks (2017) 24: 169. https://doi.org/10.1007/s10776-017-0342-7.
  • [7] S. T. Goh, S. A. Zekavat and K. Pahlavan, "DOA-based endoscopy capsule localization and orientation estimation via unscented Kalman filter," in IEEE Sensors Journal, vol. 14, no. 11, pp. 3819-3829, Nov. 2014. doi: 10.1109/JSEN.2014.2342720.
  • [8] A. Sanagavarapu Mohan, A. Boddupalli, M. D. Hossain, F. Gozasht and S. S. H. Ling, "Techniques for RF localization of wireless capsule endoscopy," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD, 2016, pp. 856-859.
  • [9] Pahlavan, Kaveh & Bao, Guanqun & Ye, Y & Makarov, S & Khan, Umair & Swar, P & Cave, David & Karellas, Andrew & Krishnamurthy, Prashant & Sayrafian, Kamran. (2012). RF Localization for Wireless Capsule Endoscopy. Int J Wireless Inform Netw. 19.
  • [10] Chandra, R., Johansson, A. J., & Tufvesson, F. (2013). Localization of an RF source inside the Human body for Wireless Capsule Endoscopy. 4854. Paper presented at 8th International Conference on Body Area Networks, BodyNets2013, https://doi.org/10.4108/icst.bodynets.2013.253713.
  • [11] C. Di Natali, M. Beccani and P. Valdastri, "Real-Time Pose Detection for Magnetic Medical Devices," in IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3524-3527, July 2013.
  • [12] D. M. Pham and S. M. Aziz, "A real-time localization system for an endoscopic capsule," 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 2014, pp. 1-6.
  • [13] P. V. Nikitin, R. Martinez, S. Ramamurthy, H. Leland, G. Spiess and K. V. S. Rao, "Phase based spatial identification of UHF RFID tags," 2010 IEEE International Conference on RFID (IEEE RFID 2010), Orlando, FL, 2010, pp. 102-109.
  • [14] H. S. Savci, A. Sula, Z. Wang, N. S. Dogan and E. Arvas, "MICS transceivers: regulatory standards and applications [medical implant communications service]," Proceedings. IEEE Southeast Con, 2005., Ft. Lauderdale, FL, USA, 2005, pp. 179-182.
  • [15] XFdtd 7.5.0.3 Reference Manual, Remcom Inc., State College, PA USA.
  • [16] L. Januszkiewicz, "Simplified human body models for interference analysis in the cognitive radio for medical body area networks," 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), Firenze, 2014, pp. 1-5.
  • [17] P. Turalchuk, I. Munina, V. Pleskachev, V. Kirillov, O. Vendik and I. Vendik, "In-body and on-body wave propagation: Modeling and measurements," 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), Athens, 2017, pp. 154-157.
  • [18] Ł. Januszkiewicz, P. Di Barba, S. Hausman, “Automated identification of human-body model parameters”, International Journal of Applied Electromagnetics and Mechanics, 2016, Vol. 51 (2016), pp. S41–S47
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46b2375b-c445-4547-ae6c-5120668c23a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.