PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on pressure relief mechanism of hydraulic support in working face under directional roof crack

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When mining coal from the working face, the main roof withstands the overlying strata. The main roof’s first weighting and periodic weighting may cause accidents, such as crushing the working face hydraulic supports. A mechanical model of the main roof was constructed, and the contributing factors of first and periodic weights on the main roof were examined in order to prevent such accidents. The thickness of the main roof was found as the most contributory factor to the main roof’s stability. Therefore, a new directional roof crack (DRC) technique is proposed, which produces directional cracks in the main roof through directional blasting and makes part of it collapse in advance so as to reduce the thickness and relieve the first and periodic weighting. To verify the effectiveness of DRC, the mechanism of DRC was analysed. A mechanical model of the hydraulic support was constructed, and the DRC techniques were tested on-site. Field experiments with a complete set of monitoring schemes showed that, with DRC technology, the roof periodic weighting interval decreased by 35.36%, and the hydraulic support pressure decreased by 17.56%. The theoretical analysis was consistent with the measured results. Therefore, the DRC technology is feasible and effective to ensure mining safety at the working face.
Rocznik
Strony
103--123
Opis fizyczny
Bibliogr. 44 poz., fot., rys., tab., wykr.
Twórcy
autor
  • China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
autor
  • China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
autor
  • China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
autor
  • ShanXiYinFeng Science & Technology CO. LTD, Taiyuan 030000, China
autor
  • China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
autor
  • China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
Bibliografia
  • [1] H. He, L.M. Dou, S.Y. Gong, J. He, Y.L Zheng, Microseismic and Electromagnetic Coupling Method for Coal Bump Risk Assessment Based on Dynamic Static Energy Principles. Safety. Sci. 114, 30-39 (2019). DOI: https://doi.org/10.1016/j.ssci.2018.12.025.
  • [2] Z. He, Q. Wu, L.J. Wen, G. Fu, A Process Mining Approach to Improve Emergency Rescue Processes of Fatal Gas Explosion Accidents in Chinese Coal Mines. Safety. Sci. 111, 154-166 (2019). DOI: https://doi.org/10.1016/j.ssci.2018.07.006.
  • [3] J.H. Wang, Development and Prospect on Fully Mechanized Mining in Chinese Coal Mines. Int. J. Coal. Sci. Techno. 1, 253-260 (2014). DOI: https://doi.org/10.1007/s40789-014-0017-2.
  • [4] W. Yin, J.Q. Wang, X.M. Bai, W.J. Sun, Z.Y. Zhou, Strata Behavior and Control Strategy of Backfilling Collaborate with Caving Fully-mechanized Mining. Open. Geosci. 12 (1), 703-717 (2020). DOI: https://doi.org/10.1515/geo-2020-0168.
  • [5] K. Skrzypkowski, W. Korzeniowski, T.N. Duc, Choice of powered roof support FAZOS-15/31-POz for Vang Danh hard coal mine. Inzh. Miner. 2 (2), (2022). DOI: https://doi.org/10.29227/IM-2019-02-71.
  • [6] H.J. Jiang, S.G. Cao, Y. Zhang, C. Wang, Analytical Solutions of Hard Roof’s Bending Moment, Deflection and Energy Under the Front Abutment Pressure Before Periodic Weighting. Int. J. Min. Sci. Techno. 26 (1), 175-181 (2016). DOI: https://doi.org/10.1016/j.ijmst.2015.11.027.
  • [7] B. Zhang, S.G. Cao, Study on First Caving Fracture Mechanism of Overlying Roof Rock in Steep Thick Coal Seam. Int. J. Min. Sci. Techno. 25 (1), 133-138 (2015). DOI: https://doi.org/10.1016/j.ijmst.2014.11.013.
  • [8] Q.L. Zou, H. Liu, Y.J. Zhang, Q.M. Li, J.W. Fu, Q.T. Hu, Rationality Evaluation of Production Deployment of Outburst-prone Coal Mines: A Case Study of Nantong Coal Mine in Chongqing. Safety. Sci. 122, 104515 (2020). DOI: https://doi.org/10.1016/j.ssci.2019.104515.
  • [9] X.W. Feng, N. Zhang, F. Xue, Z.Z. Xie, Practices, Experience, and Lessons Learned Based on Field Observations of Support Failures in Some Chinese Coal Mines. Int. J. Rock. Mech. Min. Sci. 123, 104097 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2019.104097.
  • [10] Y.J. Wang, Q. Wang, X.C. Tian, H.S. Wang, J. Yang, M.C. He, Stress and deformation evolution characteristics of gob-side entry retained by roof cutting and pressure relief. Tunn. Undergr. Sp. Tech. 123, 104419 (2022). DOI: https://doi.org/10.1016/j.tust.2022.104419.
  • [11] D.M. Pappas, C. Mark, Roof and Rib Fall Incident Trends: A 10-year Profile. Trans. Soc. Min. Metal. Explor. 330, 462-478 (2012).
  • [12] M.X. Wang, T. Zhang, M.R. Xie, B. Zhang, M.Q. Jia, Analysis of National Coal-mining Accident Data In China, 2001-2008. Public. Health. Rep. 126, 270-275 (2011).
  • [13] D.F. Yang, Y.J. Zhang, Z.H. Chen, Analysis on Catastrophe Theory During First Weighting Sliding Instability and Support Crushing of Main Roof with Large Mining Height in Shallow Coal Seam. Appl. Sci. 10 (16), 5408 (2020). DOI: https://doi.org/10.3390/app10165408.
  • [14] P. Konicek, J. Schreiber, Heavy Rockbursts Due to Longwall Mining Near Protective Pillars: A Case Study. Int. J. Min. Sci. Techno. 28 (5), 799-805 (2018). DOI: https://doi.org/10.1016/j.ijmst.2018.08.010.
  • [15] A. Shadrin, Y. Diyuk, Geophysical Criterion of Pre-outburst Coal Outsqueezing From the Face Space Into the Working. Int. J. Min. Sci. Techno. 29 (3), 499-506 (2019). DOI: https://doi.org/10.1016/j.ijmst.2018.11.001.
  • [16] W.T. Song, J.W. Cheng, W.H. Wang, Y. Qin, Z. Wang, M. Borowski, Y. Wang, P. Tukkaraja, Underground Mine Gas Explosion Accidents and Prevention Techniques – An overview. Arch. Min. Sci. 66 (2), 297-312 (2021). DOI: https://doi.org/10.24425/ams.2021.137463.
  • [17] M.G. Qian, X.X. Miao, J.L. Xu, Theoretical Study of Key Stratum in Ground Control. Journal of China Coal Society 21, 225-230 (1996).
  • [18] S.K. Das, Observations and Classification of Roof Strata Behaviour Over Longwall Coal Mining Panels in India. Int. J. Rock. Mech. Min. Sci. 37 (4), 585-597 (2000). DOI: https://doi.org/10.1016/S1365-1609(99)00123-9.
  • [19] H. Yavuz, An Estimation Method for Cover Pressure Re-establishment Distance and Pressure Distribution in the Goaf of Longwall Coal Mines. Int. J. Rock. Mech. Min. Sci. 41 (2), 193-205 (2004). DOI: https://doi.org/10.1016/S1365-1609(03)00082-0.
  • [20] M. Shabanimashcool, L. Jing, C.C. Li, Discontinuous Modelling of Stratum Cave-in in a Longwall Coal Mine in the Arctic Area. Geotech. Geol. Eng. 32, 1239-1252 (2014). DOI: https://doi.org/10.1007/s10706-014-9795-y.
  • [21] Q.S. Bai, S.H. Tu, F.T. Wang, C. Zhang, Field and Numerical Investigations of Gateroad System Failure Induced by Hard Roofs in a Longwall Top Coal Caving Face. Int. J. Coal Geol. 173, 176-199 (2017). DOI: https://doi.org/10.1016/j.coal.2017.02.015.
  • [22] H.F. Duan, L.J. Zhao, Prevention Technology for Strong Mine Pressure Disaster in the Hard-Roof Large-MiningHeight Working Face. Shock. Vib. 2020, 8846624 (2020). DOI: https://doi.org/10.1155/2020/8846624.
  • [23] J.W. Liu, C.Y. Liu, Q.L. Yao, G.Y. Si, The Position of Hydraulic Fracturing to Initiate Vertical Fractures in Hard Hanging Roof for Stress Relief. Int. J. Rock. Mech. Min. Sci. 132, 104328 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104328.
  • [24] H. He, L.M. Dou, J. Fan, T.T. Du, X.L. Sun, Deep-hole Directional Fracturing of Thick Hard Roof for Rockburst Prevention. Tunn. Undergr. Sp. Tech. 32, 34-43 (2012). DOI: https://doi.org/10.1016/j.tust.2012.05.002.
  • [25] P. Konicek, K. Soucek, L. Stas, R. Singh, Long-hole Destress Blasting for Rockburst Control During Deep Underground Coal Mining. Int. J. Rock. Mech. Min. Sci. 61, 141-153 (2013). DOI: https://doi.org/10.1016/j.ijrmms.2013.02.001.
  • [26] J.S. Guo, L.Q. Ma, Y. Wang, F.T. Wang, Hanging Wall Pressure Relief Mechanism of Horizontal Section Top-Coal Caving Face and Its Application – A Case Study of the Urumqi Coalfield, China. Energies. 10 (9), 1371 (2017). DOI: https://doi.org/10.3390/en10091371.
  • [27] S.Q. He, D.Z. Song, Z.L. Li, X.Q. He, J.Q. Chen, T.P. Zhong, Q. Lou, Mechanism and Prevention of Rockburst in Steeply Inclined and Extremely Thick Coal Seams for Fully Mechanized Top-Coal Caving Mining and Under Gob Filling Conditions. Energies. 13 (6), 1362 (2020). DOI: https://doi.org/10.3390/en13061362.
  • [28] J.X. Yang, C.Y. Liu, B. Yu, Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines. Energies. 10 (11), 1874 (2017). DOI: https://doi.org/10.3390/en10111874.
  • [29] Q.Y. Cheng, B.X. Huang, L.Y. Shao, X.L. Zhao, S.L Chen, H.Z. Li, C.W. Wang, Combination of Pre-Pulse and Constant Pumping Rate Hydraulic Fracturing for Weakening Hard Coal and Rock Mass. Energies. 13 (21), 5534 (2020). DOI: https://doi.org/10.3390/en13215534.
  • [30] Z.J. Feng, W.B. Guo, F.Y. Xu, D.M. Yang, W.Q. Yang, Control Technology of Surface Movement Scope with Directional Hydraulic Fracturing Technology in Longwall Mining: A Case Study. Energies. 12 (18), 3480 (2019). DOI: https://doi.org/10.3390/en12183480.
  • [31] D. Liu, Y.B. Wang, X.M. Ni, C.Q. Tao, J.J. Fan, X. Wu, S.H. Zhao, Classification of Coal Structure Combinations and Their Influence on Hydraulic Fracturing: A Case Study From the Qinshui Basin, China. Energies. 13 (17), 4559 (2020). DOI: https://doi.org/10.3390/en13174559.
  • [32] M. Alber, R. Bischoff, M. Bischoff, T. Meier, Rock Mechanical Investigations of Seismic Events in a Deep Longwall Coal Mine. Int. J. Rock. Mech. Min. Sci. 46 (2), 408-420 (2009). DOI: https://doi.org/10.1016/j.ijrmms.2008.07.014.
  • [33] W. Cai, L.M. Dou, M. Zhang, W.Z. Cao, J.Q. Shi, L.F. Feng, A Fuzzy Comprehensive Evaluation Methodology for Rock Burst Forecasting Using Microseismic Monitoring. Tunn. Undergr. Sp. Tech. 80, 232-245 (2018). DOI: https://doi.org/10.1016/j.tust.2018.06.029.
  • [34] L.M. Dou, X.Q. He, H. He, J. He, J. Fan, Spatial Structure Evolution of Overlying Strata and Inducing Mechanism of Rockburst in Coal Mine. T. Nonferr. Metal. Soc. 24 (4), 1255-1261 (2014). DOI: https://doi.org/10.1016/S1003-6326(14)63187-3.
  • [35] S. Yang, J. Wang, X.H. Li, J.G. Ning, P.Q. Qiu, In Situ Investigations Into Mining-induced Hard Main Roof Fracture in Longwall Mining: A Case Study. Eng. Fail. Anal. 106, 104188 (2019). DOI: https://doi.org/10.1016/j.engfailanal.2019.104188.
  • [36] M.C. He, X.Y. Zhang, S. Zhao, Directional Destress with Tension Blasting in Coal Mines. Procedia. Engineer. 191, 89-97 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.158.
  • [37] J. Yang, B.H. Liu, W.H. Bian, K.K. Chen, H.Y. Wang, C. Cao, Application Cumulative Tensile Explosions for Roof Cutting in Chinese Underground Coal Mines. Arch. Min. Sci. 66 (3), 421-435 (2021). DOI: https://doi.org/10.24425/ams.2021.138598.
  • [38] X.Y. Zhang, R.Y.S. Pak, Y.B. Gao, C.K. Liu, C. Zhang, J. Yang, M.C. He, Field Experiment on Directional Roof Presplitting for Pressure Relief of Retained Roadways. Int. J. Rock. Mech. Min. Sci. 134, 104436 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104436.
  • [39] H.M. Westergaard, Theory of Elasticity and Plasticity American Journal of Physics. Amer. J. Phys. 34, 545 (1966). DOI: https://doi.org/10.1119/1.1973102.
  • [40] X.X. Miao, X.B. Mao, G.W. Hu, Research on Broken Expand and Press Solid Characteristics of Rocks and Coals. J. Exp. Mech. 12, 394-400 (1997).
  • [41] M.C. He, Y.B. Gao, J. Yang, W.L. Gong, An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining. Energies 10 (11), 1785 (2017). DOI: https://doi.org/10.3390/en10111785.
  • [42] T. Janoszek, The Assessment of Longwall Working Stability Based on the Mohr-Coulomb Stress Criterion – Numerical Analysis. Arch. Min. Sci. 65 (2), 493-509 (2020). DOI: https://doi.org/10.24425/ams.2020.134131.
  • [43] L. Herezy, D. Janik, K. Skrzypkowski. Powered Roof Support – Rock Strata Interactions on the Example of an Automated Coal Plough System. Stdu Geotrch Mech. 40 (1), 46-55 (2018). DOI: https://doi.org/10.2478/sgem-2018-0007.
  • [44] S. Rajwa, The Influence of the Geometrical Construction of the Powered Roof Support on the Loss of a Longwall Working Stability Based on the Practical Experience. Arch. Min. Sci. 65 (3), 511-529 (2020). DOI: https://doi.org/10.24425/ams.2020.134132.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46b16868-70f3-4359-9cd0-0a62026cc6f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.