PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Global convergence analysis of impulsive fractional order difference systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is designed to deal with the convergence and stability analysis of impulsive Caputo fractional order difference systems. Using the Lyapunov functions, the Z-transforms of Caputo difference operators, and the properties of discrete Mittag-Leffler functions, some effective criteria are derived to guarantee the global convergence and the exponential stability of the addressed systems.
Twórcy
autor
  • Department of Mathematics, Zhejiang International Studies University, HangZhou, 310023, PR China
autor
  • Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, PR China
Bibliografia
  • [1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [2] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
  • [3] J. Huo, H. Zhao, and L. Zhu, “The effect of vaccines on backward bifurcation in a fractional order HIV model”, Nonlinear Analysis: Real World Applications 26, 289–305 (2015).
  • [4] J. Huo and H. Zhao, “Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks”, Physica A 448, 41–56 (2016).
  • [5] I. Stamova, “On the Lyapunov theory for functional differential equations of fractional order”, Proc. Amer. Math. Soc. 144(4), 1581–1593 (2016).
  • [6] T. Jankowski, “Fractional equations of Volterra type involving a Riemann-Liouville derivative”, Appl. Math. Lett. 26, 344–350 (2013).
  • [7] T. Jankowski, “Boundary problems for fractional differential e-quations”, Appl. Math. Lett. 28, 14–19 (2014).
  • [8] B. Ahmad, “Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations”, Appl. Math. Lett. 23, 390–394 (2010).
  • [9] B. Ahmad, “Sharp estimates for the unique solution of two-point fractional-order boundary value problems”, Appl. Math. Lett. 65, 77–82 (2017).
  • [10] W. Zhu, W. Li, P. Zhou, and C. Yang, “Consensus of fractionalorder multi-agent systems with linear models via observer-type protocol”, Neurocomputing 230, 60–65 (2017).
  • [11] P. Zhou and W. Zhu, Function projective synchronization for fractional-order chaotic systems, Nonlinear Analysis: Real World Applications 12, 811–816 (2011).
  • [12] I.K. Dassios, D.I. Baleanu, and G.I. Kalogeropoulos, “On nonhomogeneous singular systems of fractional nabla difference equations”, Appl. Math. Comput. 227, 112–131 (2014).
  • [13] I.K. Dassios and D.I. Baleanu, “Duality of singular linear systems of fractional nabla difference equations”, Appl. Math. Model. 39, 4180–4195 (2015).
  • [14] M. Wyrwas and D. Mozyrska, On Mittag-Leffler Stability of Fractional Order Difference Systems, Advances in Modelling and Control of Non-integer Order Systems. Springer International Publishing, 2015: 209–220.
  • [15] D. Mozyrska, E. Pawłuszewicz, and M. Wyrwas, “Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation”, Int. J. Syst. Sci. 48(4), 788–794 (2017).
  • [16] D. Mozyrska and M. Wyrwas, “The Z-Transform method and delta type fractional difference operators”, Discrete Dyn. Nat. Soc. ID. 852734, 2015.
  • [17] D. Mozyrska and E. Pawłuszewicz, “Observability of linear q-difference fractional-order systems with finite initial memory.” Bull. Pol. Ac.: Tech. 58(4), 601–605 (2010).
  • [18] T. Kaczorek, “Practical stability of positive fractional discretetime linear systems”, Bull. Pol. Ac.: Tech. 56 (4), 313–317 (2008).
  • [19] T. Kaczorek, “Stability of fractional positive continuous-time linear systems with state matrices in integer and rational powers”, Bull. Pol. Ac.: Tech. 65 (3), 305–311 (2017).
  • [20] P. Sopasakis and H. Sarimveis, “Stabilising model predictive control for discrete-time fractional-order systems”, Automatica 75, 24–31 (2017).
  • [21] I. Stamova and J. Henderson, “Practical stability analysis of fractional-order impulsive control systems”, ISA trans. 64, 77–85 (2016).
  • [22] I. Stamova, “Global stability of impulsive fractional differential equations”, Appl. Math. Comput. 237, 605–612 (2014).
  • [23] I. Stamova, “Mittag-Leffler stability of impulsive differential equations of fractional order”, Q. Appl. Math. 73(3), 525–535 (2015).
  • [24] L. Xu, H. Hu, and F. Qin, “Ultimate boundedness of impulsive fractional differential equations”, Appl. Math. Lett. 62, 110–117 (2016).
  • [25] L. Xu, J. Li, and S.S. Ge. “Impulsive stabilization of fractional differential systems.” ISA trans. 70, 125–131 (2017).
  • [26] L. Xu and W. Liu, “Ultimate boundedness of impulsive frac- tional delay differential equations”, Appl. Math. Lett. 79, 58–66 (2018).
  • [27] M. Benchohra and B.A. Slimani, “Existence and uniqueness of solutions to impulsive fractional differential equations”, Electron. J. Differ. Eq. 10, 1–11 (2009).
  • [28] S. Heidarkhani and A. Salari, “Nontrivial solutions for impulsive fractional differential systems through variational methods”, Comput. Math. Appl., (to be published).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46ad549f-9c02-4ef8-8cf8-44ba3000710a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.