PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Temperature Prediction Using Long Short-Term Memory – Case Study Java Island, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We predict the surface temperature of Java Island in Indonesia based on a dataset of wind speed, surface temperature, and surface pressure from 2002 to 2021. Long short-term memory model is employed to predict the surface temperature in 2022. The predicted surface temperature corresponds to the seasons of Indonesia. The result shows a pattern between dry and monsoon seasons of Indonesia. The performance of the model is evaluated using root mean square error. The root mean square error in the land area is larger than the water area.
Twórcy
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Sudarto No. 13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Sudarto No. 13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Sudarto No. 13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah 50275, Indonesia
Bibliografia
  • 1. Avia L.Q. 2019. Change in rainfall per-decades over Java Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 374(1), 012037.
  • 2. Cao J., Li Z., Li J. 2019. Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical mechanics and its applications, 519, 127–139.
  • 3. Chang C.P., Harr P.A., Chen H.J. 2005. Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Monthly Weather Review, 133(3), 489–503.
  • 4. Chollet F. 2018. Keras: The python deep learning library. Astrophysics source code library, ascl-1806.
  • 5. Fischer T., Krauss C. 2018. Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654–669.
  • 6. Harris C. R., Millman K. J., van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., et.al. 2020. Array programming with NumPy. Nature, 585, 357–362.
  • 7. Hendon H.H. 2003. Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. Journal of Climate, 16(11), 1775–1790.
  • 8. Hoyer S., Hamman J. 2017. Xarray: N-D labeled Arrays and Datasets in Python. Journal of Open Research Software, 5(1), 10.
  • 9. Hua Y., Zhao Z., Li R., Chen X., Liu Z., Zhang H. 2019. Deep learning with long short-term memory for time series prediction. IEEE Communications Magazine, 57(6), 114–119.
  • 10. Hunter J.D. 2007. Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(3), 90–95.
  • 11. Irsyad F., Oue H. 2021. Predicting future dry season periods for irrigation management in West Sumatra, Indonesia. Paddy and Water Environment, 19(4), 683–697.
  • 12. Koesuma S., Andriani R.D., Legowo, B. 2021. Analyzing of the Indian Ocean Dipole (IOD) phenomena in relation to climate change in Indonesia: a review. Journal of Physics: Conference Series, 1918(2), 022030.
  • 13. Lestari S., King A., Vincent C., Karoly D., Protat A. 2019. Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia. Weather and Climate Extremes, 24, 100202.
  • 14. Livneh B., Rajagopalan B., Kasprzyk, J. 2017. Hydrological model application under data scarcity for multiple watersheds, Java Island, Indonesia. Journal of Hydrology: Regional Studies, 9, 127–139.
  • 15. McKinney W. 2010. Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference, 445, 51–56.
  • 16. Met Office. 2017. Cartopy: a cartographic python library with a Matplotlib interface. UK.
  • 17. Saputra A., Gomez C., Delikostidis I., Zawar-Reza P., Hadmoko D.S., Sartohadi J., Setiawan, M.A. 2018. Determining earthquake susceptible areas southeast of Yogyakarta, Indonesia - Outcrop analysis from structure from motion (SfM) and geographic information system (GIS). Geosciences, 8(4), 132.
  • 18. Shewalkar A., Nyavanandi D., Ludwig S.A. 2019. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research, 9(4), 235–245.
  • 19. van Houdt G., Mosquera C., Nápoles G. 2020. A review on the long short-term memory model. Artificial Intelligence Review, 53, 5929–5955.
  • 20. Zhang Q., Wang H., Dong J., Zhong G., Sun, X. 2017. Prediction of sea surface temperature using long short-term memory. IEEE geoscience and remote sensing letters, 14(10), 1745–1749.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46a8ca37-7674-4867-a0e1-918f23533e8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.