Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Globally, African marigold (MG) derived essential oils (EOs) have attained an immense economic pertinence in the flavor, fragrance, food, medicinal, and floricultural industries, which necessitate boosting its production on a commercial scale. Therefore, we aimed to assess varying levels (0, 50, 100, 150, and 200 mg L-1) of exogenously applied melatonin (MT) as a growth hormone to trigger growth, flower yield, and EOs of MG. The MT was applied as a foliar spray after thirty days of transplantation of MG plants and repeated thrice at fifteen-day intervals. The results depicted that exogenous MT (150 mg L-1) recorded the maximum plant height and leaves number along with fresh and dry weights of leaves and roots. The same treatment exhibited 66%, 64%, and 18% higher flower fresh and dry weights and flower yield respectively, than the control. Additionally, MT remained effective in reducing days taken to bud emergence and flowering, while flower retention duration increased by 11 days. Following the trend of vegetative growth traits, foliar-applied MT (150 mg L-1) remained unmatched in terms of physiological attributes (transpiration rate, stomatal conductance, chlorophyll a, and b contents) of MG. Moreover, for EOs extracted from fresh and dry flowers and leaves, this treatment remained effective by producing 77%, 73%, 53%, and 85% higher content, respectively than the control. Finally, the chemical profiling analyses detected eighty-seven chemical constituents (Caryophyllene oxide was the most dominant compound, and cis-Z-alpha-Bisabolene epoxide followed it) in MG flowers. In terms of the retention time of different chemical compounds in MG flowers, Calarene epoxide had the highest retention time of 19.75 minutes among major compounds. Based on these results, 150 mg L-1 dose of MT may be recommended to growers for boosting MG growth, floral yield and EOs content sustainably.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
157--169
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
autor
- Department of Horticulture, MNS-University of Agriculture, Multan 60000, Pakistan
autor
- Department of Horticulture, MNS-University of Agriculture, Multan 60000, Pakistan
autor
- Department of Plant Production, Faculty of Agriculture, Mutah University, Karak, Jordan
autor
- Faculty of Science Yanbu, Taibah University, Yanbu El Bahr 46423, Saudi Arabia
autor
- Horticultural Research Sub-Station for Floriculture and Landscaping, Multan 60000, Pakistan
autor
- Horticultural Research Sub-Station for Floriculture and Landscaping, Multan 60000, Pakistan
autor
- Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, United States
Bibliografia
- 1. Abbas S.F., Bukhari M.A., Raza M.A.S., Abbasi G.H., Ahmad Z., Alqahtani M.D., Almutairi K.F., Abd_Allah E.F., Iqbal M.A. 2023. Enhancing drought tolerance in wheat cultivars through nano-ZnO priming by improving leaf pigments and antioxidant activity. Sustainability, 15, 5835. https://doi.org/10.3390/su15075835
- 2. Ahmad Z., Younis R., Ahmad T., Iqbal M.A., Artyszak A., Alzahrani Y.M., Alharby H.F., Alsamadany H. 2024. Modulating physiological and antioxidant responses in wheat cultivars via foliar application of silicon nanoparticles (SiNPs) under arsenic stress conditions. Silicon, 16, 5199–5211. https://doi.org/10.1007/s12633-024-03078-6
- 3. Arnao M.B., Hernández-Ruiz J. 2019. Melatonin: A new plant hormone and/or a plant master regulator? Trends in Plant Science, 24, 38–48.
- 4. Arnon D.I. 1949. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology, 24, 1–15. https://doi.org/10.1104/24.1.1
- 5. Aslam A., Zaman F., Qasim M., Ziaf K., Shaheen I., Afzal NS., Hussain S. 2016. Impact of nitrogen and potash on growth, flower and seed yield of African marigold (Tagetes erecta L.). Scientia, 14, 266–269.
- 6. Campos C.N., Avila R.G., Souza K.R.D., Azevedo L.M., Alves J.D. 2019. Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management, 211, 37–47.
- 7. Chen Z., Cao X., Niu J. 2021. Effects of melatonin on morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa under high-nitrate stress. Frontiers in Plant Science, 12, 694179. https://doi.org/10.3389/fpls.2021.694179
- 8. Cui G., Zhao X., Liu S., Sun F., Zhang C., Xi Y. 2017. Benefcial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry, 118, 138–149.
- 9. Dai L., Li J., Harmens H., Zheng X., Zhang C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry, 149, 86–95.
- 10. Fu Y., Xin L., Mounkaila Hamani A.K., Sun W., Wang H., Amin A.S. 2023. Foliar application of melatonin positively affects the physio-biochemical characteristics of cotton (Gossypium hirsutum L.) under the combined effects of low temperature and salinity stress. Plants, 12, 3730. https://doi.org/10.3390/plants12213730
- 11. Gomez K.A., Gomez A.A. 1984. Statistical procedures for Agricultural Research. 2nd Edition, John Wiley and Sons, New York.
- 12. Guzman M.R., Marques I. 2023. Effect of varied salinity on marigold flowers: reduced size and quantity despite enhanced antioxidant activity. Agronomy, 13, 3076. https://doi.org/10.3390/agronomy13123076
- 13. Imran M., Shazad R., Bilal S., Imran Q.M., Khan M., Kang S.M., Khan A.L., Yun B.W., Lee I.J. 2021. Exogenous melatonin mediates the regulation of endogenous nitric oxide in Glycine max L. to reduce effects of drought stress. Environmental and Experimental Botany, 188, 104511.
- 14. Iqbal A., Abbas R.N., Al Zoubi O.M., Alasasfa M.A., Rahim N., Tarikuzzaman M., Aydemir S.K., Iqbal M.A. 2024. Harnessing the mineral fertilization regimes for bolstering biomass productivity and nutritional quality of cowpea [Vigna unguiculata (L.) Walp]. Journal of Ecological Engineering, 25(7), 340–351. https://doi.org/10.12911/22998993/18893
- 15. Iqbal M.A., Imtiaz H., Abdul H., Bilal A. 2021. Soybean herbage yield, nutritional value and profitability under integrated manures management. Anais da Academia Brasileira de Ciencias, 93(1), e20181384. https://doi.org/10.1590/00013765202120181384
- 16. Islam M.R., Kamal, M.M., Hossain M.F., Hossain J., Azam M.G., Akhter M.M., Hasan M.K., Al-Ashkar I., Almutairi K.F., EL Sabagh A., Rahman M.A., Iqbal M.A., Islam M.S. 2023. Drought tolerance in mung bean is associated with the genotypic divergence, regulation of proline, photosynthetic pigment and water relation. Phyton, International Journal of Experimental Botany, 92(3), 955–981. https://doi.org/10.32604/phyton
- 17. Jiang C., Cui Q., Feng K., Xu D., Li C., Zheng Q. 2016. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiology, 38, 82.
- 18. Kamiab F. 2020. Exogenous melatonin mitigates salinity damage and improves the growth of pistachio under salinity stress. Journal of Plant Nutrition, 43, 1468–1484.
- 19. Kaya A., Doganlar Z.B. 2019. Melatonin improves the multiple stress tolerance in pepper (Capsicum annuum). Scientia Horticulturae, 25, 108509.
- 20. Li Z., Su X., Chen Y., Fan X., He L., Guo J., Wang Y., Yang Q. 2021. Melatonin improves drought resistance in maize seedlings by enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced drought. Journal of Plant Biology, 64, 299–312.
- 21. Li J., Yang Y., Sun K., Chen Y., Chen X., Li, X. 2019. Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules, 24, 1826.
- 22. Meftahizadeh H., Baath G.S., Saini R.K. 2023. Melatonin-mediated alleviation of soil salinity stress by modulation of redox reactions and phytochemical status in guar (Cyamopsis tetragonoloba L.). Journal of Plant Growth Regulation, 42, 4851–4869. https://doi.org/10.1007/s00344-022-10740-z
- 23. Mir A.R., Argal S., Agarwal R.M. 2018. Accumulation of secondary metabolites and osmotica in different Parts of T. erecta L. and its ecophysiological relevance. International Journal of Scientific Research and Reviews, 7(1), 198–209.
- 24. Mohammadi H., Moradi S., Aghaee A. 2021. Effect of melatonin on morphological and physiological parameters of Anise hyssop under water deficit stress conditions. Journal of Plant Process and Function, 10(44), 45–58.
- 25. Moustakas M., Sperdouli I., Adamakis I.D.S., Şaş B., İşgören S., Moustaka J., Morales F. 2023. Mechanistic approach on melatonin-induced hormesis of photosystem ii function in the medicinal plant Mentha spicata. Plants, 12, 4025. https://doi.org/10.3390/plants12234025
- 26. Mukherjee S., Bhatla S.C. 2020. Exogenous melatonin modulates endogenous H2S homeostasis and L-cysteine desulfhydrase activity in salt-stressed tomato (Solanum lycopersicum L. var. cherry) seedling cotyledons. Journal of Plant Growth Regulation, 40, 2502–2514.
- 27. Okunlola G.O., Olatunji O.A., Niewiadomska E. 2023. Foliar application of melatonin alleviates the deleterious effects of drought on the three most cultivated capsicum species in Africa. Gesunde Pflanzen, 75, 139–149. https://doi.org/10.1007/s10343-022-00685-4
- 28. Parsa Motlagh B., Shahdadi F., Salehi Sardoei A. 2024. Foliar-applied melatonin alters grain yield and the fatty acid profile of sesame (Sesamum indicum L.) under drought stress. Journal of Crop Health, 18. https://doi.org/10.1007/s10343-024-00977-x
- 29. Ramírez-Estrada C.A., Sánchez E., Flores-Córdova M.A., Pérez-Álvarez S., Noperi-Mosqueda L.C., Chávez-Mendoza C. 2023. Photosynthetic efficiency in green bean plants through the application of omeprazole and melatonin at low doses. International Journal of Plant Biology, 14, 864–878. https://doi.org/10.3390/ijpb14040064
- 30. Safar A.A., Ghafoor A.O., Dastan D. 2020. Screening of chemical characterization, antifungal and cytotoxic activities of essential oil constituents of Tagetes erecta L. from Erbil, Kurdistan region-Iraq. Polish Journal of Environmental Studies, 29, 2317–2326.
- 31. Sagar A., Hossain M.A., Uddin, M.N., Tajkia J.E., Mia M.A., Iqbal M.A. 2023. Genotypic divergence, photosynthetic efficiency, sodium extrusion, and osmoprotectant regulation conferred salt tolerance in sorghum. Phyton-International Journal of Experimental Botany, 92(8), 2349–2368. https://doi.org/10.32604/phyton.2023.028974
- 32. Sardar H., Ramzan M.A., Naz S. 2023. Exogenous application of melatonin improves the growth and productivity of two broccoli (Brassica oleracea L.) cultivars under salt stress. Journal of Plant Growth Regulation, 42, 5152–5166. https://doi.org/10.1007/s00344-023-10946-9
- 33. Sarropoulou V.N., Therios I.N., Dimassi-Theriou K.N. 2012. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). Journal of Pineal Research, 52, 38–46.
- 34. Sharif R., Xie C., Zhang H., Arnao M.B., Ali M., Ali Q., Muhammad I., Shalmani A., Nawaz M.A., Chen P. 2018. Melatonin and its effects on plant systems. Molecules, 23, 2352. https://doi.org/10.3390/molecules23092352
- 35. Sharma A., Wang J., Xu D., Tao S., Chong S., Yan D., Li Z., Yuan H., Zheng, B. 2020. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of the Total Environment, 713, 136675.
- 36. Shen J., Chen D., Zhang X., Song L., Dong J., Xu Q., Hu M., Cheng Y., Shen F., Wang W. 2021. Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin. Journal of Plant Research, 134, 857–871.
- 37. Talaat N.B. 2023. Drought stress alleviator melatonin reconfigures water-stressed barley (Hordeum vulgare L.) plants’ pho-tosynthetic efficiency, antioxidant capacity, and endogenous phytohormone profile. International Journal of Molecular Sciences, 24, 16228. https://doi.org/10.3390/ijms242216228
- 38. Tarikuzzaman M., Iqbal M.A., Lynam J.G. 2024. Direct contact membrane distillation of artificial urine for sugar beet production in a hydroponic system. Journal of Ecological Engineering, 25(10), 252–260. https://doi.org/10.12911/22998993/192174
- 39. Tudora C., Nenciu F., Muscalu A., Burnichi F., Gatea, F., Boiu-Sicuia O.A., Israel-Roming F. 2024. Pesticidal potential of essential oil obtained from a new variety of marigold (Tagetes patula L., fam. Asteraceae). Applied Science, 14, 3159. https://doi.org/10.3390/app14083159
- 40. Yang Y., Guan S., Jiang X., Li M., Wei S., Diao M. 2023. Exogenous melatonin alleviates the inhibitory effect of NaHCO3 on tomato growth by regulating the root pH value and promoting plant photosynthesis. Agronomy, 13, 2777. https://doi.org/10.3390/agronomy13112777
- 41. Zhang H., Zhang S., Zhang H., Chen X., Liang F., Qin H., Zhang Y., Cong, R., Xin H., Zhang Z. 2020. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Scientific Reports, 10, 16835.
- 42. Zulfiqar F., Younis A., Riaz A., Mansoor F., Hameed M., Akram N.A., Abideen Z. 2020. Morpho-anatomical adaptations of two Tagetes erecta L. cultivars with contrasting response to drought stress. Pakistan Journal of Botany, 52, 801–810.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46a0ed0e-7f19-42c9-acad-0cc1e614964f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.