PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismo ionospheric anomalies related to the Mw 7.5, Kepulauan Alor, Indonesia earthquake

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Discussions about anomaly in the ionosphere have made significant progress since the great Alaskan earthquake, in 1964. Specifying signs of precursors of an earthquake and traces of the aftershock of its may minimize every kind losses. This study examines the possible effect on the ionosphere of the M7.5 earthquake that occurred at 21:46 UT on November 11, 2004, near Kepulauan, Alor Islands (8,152°S-124,868°E), Indonesia. This effect is observed in TEC (TECU) data. The limits of the TEC data gained from IRI-2016 are determined by the statistical method. Anomalies are marked by means of out-of-bounds data. Anomaly causes are introduced to the reader according to the principle of causality. In this context, a portrait of space climate conditions is drawn with the aid of the earthquake, geomagnetic storm, and solar activity effect. According to this portrait, we perceive on October 15, November 10, and December 1-11. Probably the November 10 anomaly is caused by the earthquake and the other anomaly days may be related to the aftershock of the earthquake.
Czasopismo
Rocznik
Strony
2633--2644
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
  • Department of Mathematical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, 34220, Turkey
Bibliografia
  • 1. Bagiya MS, Joshi HP, Iyer KN, Aggarwal M, Ravindran S, Pathan BM (2009) TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann Geophys 27:1047–1057. https://doi.org/10.5194/angeo-27-1047-2009
  • 2. Baral R, Adhikari B, Calabia A, Shah M, Mishra RK, Silwal A, Bohara S, Manandhar R, Peral LD, Frías MDR (2023) Spectral Features of Forbush Decreases during Geomagnetic Storms. J Atmos Solar Terrest Physi 242:105981. https://doi.org/10.1016/j.jastp.2022.105981
  • 3. Basciftci F (2021) An analysis of the latest super geomagnetic storm of the 23RD solar cycle (May 15, 2005, Dst: –247 nT). Geomagn Aeron 61:S156–S166. https://doi.org/10.1134/S0016793222010029
  • 4. Basciftci F (2022) Investigating and comparing the two superstorms in the 23rd solar cycle. Indian J Phys. https://doi.org/10.1007/s12648-022-02396-y
  • 5. Basciftci F and Bulbul S (2022) Investigation of ionospheric TEC changes potentially related to Seferihisar-Izmir earthquake (30 October 2020, MW 6.6). Bull Geophys Oceanogr. https://doi.org/10.4430/bgo00394
  • 6. Basciftci F, Bulbul S (2023) Statistical analysis of the regional and global ionosphere model on intense geomagnetic storm. Indian J Phys. https://doi.org/10.1007/s12648-023-02700-4
  • 7. Basciftci F (2023) Using artificial neural networks in the investigation of four moderate geomagnetic storms (mGSs) that occurred in 2015. Adv Space Res 71(10):4382–4400. https://doi.org/10.1016/j.asr.2023.01.001
  • 8. Bulbul S and Basciftci F (2021) TEC anomalies observed before and after Sivrice-Elaziğ earthquake (24 January 2020, Mw: 6.8). Arab. J. Geosci. 14:1077. https://doi.org/10.1007/s12517-021-07426-3
  • 9. Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2):261–275. https://doi.org/10.1029/2000RS002432
  • 10. Dautermann T, Calais E, Lognonné P, Mattioli GS (2009) Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys J Int 179:1537–1546
  • 11. Davies K, Baker DM (1965) Ionospheric effects observed around time of Alaskan earthquake of March 28 1964. J Geophys Res 70:2251–2253
  • 12. Dayanandan B, Paul B and Galav P (2020) I. Ionospheric response to the second strongest geomagnetic storm of the solar cycle 24: first results from the Arabian Peninsula. In: 2020 IEEE international conference on wireless for space and extreme environments (WiSEE), Vicenza, Italy, 2020, pp 101–105. https://doi.org/10.1109/WiSEE44079.2020.9262692
  • 13. Debnath L, Bahatta D (2007) Integral transforms and their applications, second ed., Taylor and Francis LLC.
  • 14. Eroglu E, Ak N, Koklu K, Ozdemiz Z, Celik N, Eren N (2012) Energy Education Science and Technology Part A: Energy Science and Research 30(1):719–726
  • 15. Eroglu E (2018) Mathematical modeling of the moderate storm on 28 February 2008. New Astron 60:33–41. https://doi.org/10.1016/j.newast.2017.10.002
  • 16. Eroglu E (2019) Modeling the super storm in the 24th solar cycle. Earth Planets Space 71(26):1–12. https://doi.org/10.1186/s40623-019-1002-1
  • 17. Eroglu E (2020) Modeling of 21 July 2017 Geomagnetıc storm. J Eng Technol Appl Sci 5(1):33–49. https://doi.org/10.30931/jetas.680416
  • 18. Eroglu E (2022a) Discussing total electron content over the solar wind parameters. Math Prob Eng, 2022a, ID 9592008. https://doi.org/10.1155/2022/9592008
  • 19. Eroglu E (2022b) Ionospheric anomalies related to the Mw 6.5 Samar, Philippines earthquake. Acta Geophys 71(2):601–611. https://doi.org/10.1007/s11600-022-00980-8
  • 20. Eroglu E (2022c) Ionospheric anomalies related to the Mw 7.1 northern Mid-Atlantic Ridge earthquake. Adv Space Res 71(8): 3382–3393. https://doi.org/10.1016/j.asr.2022.12.010
  • 21. Eroglu E, Nane E, Goker UD (2023) Seismo-ionospheric anomalies related to the Mw 6.6, July 20, 2017, earthquake in Bodrum, Turkey. Natural Hazards. https://doi.org/10.1007/s11069-023-05914-1
  • 22. Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Sol-Terr Phy 71:1824–1834
  • 23. Fu HS, Khotyaintsev YV, Vaivads A, Retinò A, André M (2013) Energetic electron acceleration by unsteady magnetic reconnection. Nat Phys 9:426–430. https://doi.org/10.1038/nphys2664
  • 24. Fu HS, Vaivads A, Khotyaintsev YV, André M, Cao JB, Olshevsky VJ, Eastwood P, Retinò A (2017) Intermittent energy dissipation by turbulent reconnection. Geophys Res Lett 44(1):37–43.
  • 25. Igarashi G, Saeki S, Takahata N, Sumikawa K et al (1995) Ground-water radon anomaly before the Kobe Earthquake in Japan. Science 269(5220):60–61. https://doi.org/10.1126/science.269.5220.60
  • 26. Inyurt S, Yildirim O, Mekik C (2017) Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea. Ann Geophys 35(4):817–824
  • 27. Inyurt S (2020) Modeling and comparison of two geomagnetic storms. Adv Space Res 65(3):966–977. https://doi.org/10.1016/j.asr.2019.11.004
  • 28. Inyurt S, Razin MRG (2021) Regional application of ANFIS in ionosphere time series prediction at severe solar activity period. Acta Astronaut 179:450–461. https://doi.org/10.1016/j.actaastro.2020.11.027
  • 29. Isik O, Kocak ZF, Eroglu E (2014) The Investigation of surplus of energy and signal propagation at time-domain waveguide modes. Appl Appl Math Int J (AAM) 9(2):637–645
  • 30. Ke F, Wang J, Tu M, Wang X, Wang X, Zhao X, Deng J (2018) Enhancing reliability of seismo-ionospheric anomaly detection with the linear correlation between total electron content and the solar activity index F10.7: Nepal earthquake 2015. J Geodyn 121:88–95
  • 31. Khan AQ, Ghaffar B, Shah M, Ullah I, Júnior JFO, Eldin SM (2022) Possible seismo-ionospheric anomalies associated with the 2016 Mw 6.5 Indonesia earthquake from GPS TEC and Swarm satellites. Front Astron Space Sci Sec Space Phys 9:2022. https://doi.org/10.3389/fspas.2022.1065453
  • 32. Kim JW, Joo HY, Kim R, Moon JH (2018) Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju. Korea Nuclear Eng Technol 50(3):512–518. https://doi.org/10.1016/j.net.2017.12.010
  • 33. Klotz S, Johnson NL (1983) Encyclopedia of statistical sciences. John Wiley and Sons.
  • 34. Koklu K (2018) İntegral Dönüşümler ve Uygulamaları, ISBN 978–605–9594–18–9, Papatyabilim Yayınevi, İstanbul, Ocak, 2018 (in Turkish)
  • 35. Koklu K (2020) Mathematical analysis of the 09 March 2012 intense storm. Adv Space Res 66(4):932. https://doi.org/10.1016/j.asr.2020.04.053
  • 36. Koklu K (2021) Mathematical analysis of the 08 May 2014 weak storm. Math Probl Eng. https://doi.org/10.1155/2021/9948745
  • 37. Koklu K (2022) Using artificial neural networks for comparison of the 09 March 2012 intense and 08 May 2014 weak storms. Adv Space Res 70(10):2929–2940. https://doi.org/10.1016/j.asr.2022.07.067
  • 38. Konakoglu B, Onay FK, Aydemir SB (2023) Tropospheric zenith wet delay prediction with a new hybrid ANN–Gorilla troops optimizer algorithm. Adv Space Res. https://doi.org/10.1016/j.asr.2023.01.035
  • 39. Lin CC, Shen MH, Chou MY, Chen CH, Yue J, Chen PC, Matsumura M (2017) Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys Res Lett 44:7578–7586
  • 40. Manoj C, Maus S, Lühr H, Alken P (2008) Penetration characteristics of the interplanetary electric field to the daytime equatorial ionosphere. J Geophys Res 113:A12310. https://doi.org/10.1029/2008JA013381
  • 41. Manoj C, Maus S (2012) A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather 10:1–9
  • 42. Mannucci AJ, Tsurutani BT, Kelley MC, Iijima BA, Komjathy A (2009) Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. J Geophys Res 114:A10308. https://doi.org/10.1029/2009JA014043
  • 43. Olwendo OJ, Baki P, Cilliers PJ, Mito C, Doherty P (2012) Comparison of GPS TEC measurements with IRI-2007 TEC prediction over the Kenyan region during the descending phase of solar cycle 23. Adv Space Res 49(5):914–921. https://doi.org/10.1016/j.asr.2011.12.007
  • 44. Ozden Koklu, K. İntegral Denklemler, ISBN 978–605–9594–43–1, Papatyabilim Yayınevi, İstanbul, Mart, 2018 (in Turkish)
  • 45. Patari A, Paul B, Guha A (2021) Statistics of GPS TEC at the northern EIA crest region of the Indian subcontinent during the solar cycle 24 (2013–2018): comparison with IRI-2016 and IRI-2012 models. Astrophys Space Sci 366:46. https://doi.org/10.1007/s10509-021-03950-6
  • 46. Paul B, Patari A, De BK, Guha A (2019) Ionospheric irregularities observed during the St. Patrick’s Day 2015 severe geomagnetic storm over the southern high latitude polar cap region: a case study from Antarctic Circle. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 1. https://doi.org/10.23919/URSIAP-RASC.2019.8738261
  • 47. Paul B, Gordiyenko G, Galav P (2020) Study of the low and mid-latitude ionospheric response to the geomagnetic storm of 20th December 2015. Astrophys Space Sci 365:174. https://doi.org/10.1007/s10509-020-03884-5
  • 48. Politis DZ, Potirakis SM, Kundu S, Chowdhury S, Sasmal S, Hayakawa M (2022) Critical dynamics in stratospheric potential energy variations prior to significant (M> 6.7) Earthquakes. Symmetry. 14(9):1939. https://doi.org/10.3390/sym14091939
  • 49. Satti MS, Ehsan M, Abbas A, Shah M, Júnior JFO, Naqvi NA (2022) Atmospheric and ionospheric precursors associated with Mw ≥ 6.5 earthquakes from multiple satellites. J Atmos Solar Terrest Phys 227:105802. https://doi.org/10.1016/j.jastp.2021.105802
  • 50. Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system, Ph.D Thesis, Universitat Bern, Switzerland
  • 51. Shah M, Abbas A, Arqim MA, Ashraf U, Júnior JFO, Tariq MA, Ahmed J, Ehsan M, Ali A (2022) Possible seismo-ionospheric anomalies associated with Mw>5.0 earthquakes during 2000–2020 from GNSS TEC. Adv Space Res 70(1):179–187. https://doi.org/10.1016/j.asr.2022.04.025
  • 52. Senturk E, Inyurt S, Sertcelik I (2020) Ionospheric anomalies associated with the Mw 7.3 Iran-Iraq border earthquake and a moderate magnetic storm. Ann Geophys 38:1031–1043. https://doi.org/10.5194/angeo-38-1031-2020
  • 53. Tariq MA, Shah M, Hernández-Pajares M, Iqbal T (2019) Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv Space Res 63(7):2088–2099. https://doi.org/10.1016/j.asr.2018.12.028
  • 54. Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, Grande M, Kamide Y, Kasahara Y, Lu G, Mann I, McPherron R, Soraas F, Vasyliunas V (2006) Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res Space Phys 111(A7). https://doi.org/10.1029/2005JA011273
  • 55. Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Saito A, Araki T, Yumoto K, Tsuda T, Abdu MA, Sobral JHA, Gonzalez WD, McCreadie H, Lakhina GS, Vasyliūnas VM (2008) Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J Geophys Res 113:A05311. https://doi.org/10.1029/2007JA012879
  • 56. Yasuoka Y, Ishii T, Tokonami S, Ishikawa T, Narazaki Y, Shinogi M (2005) Radon anomaly related to the 1995 Kobe earthquake in Japan. Int Congr Ser 1276:426–427. https://doi.org/10.1016/j.ics.2004.10.011
  • 57. Yildirim O, Inyurt S, Mekik C (2016) Review of variations in Mw<7 earthquake motions on position and TEC (Mw=6.5 Aegean Sea earthquake sample). Nat Hazards Earth Syst Sci 16:543–557. https://doi.org/10.5194/nhess-16-543-2016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-469f233a-e875-4578-a6b9-c39540ba6a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.