Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wastewater treatment and the efficient use of sewage sludge biochar are critical in addressing the needs of ever-increasing population in the world. Recently, phosphorus (P) removal from wastewater has become highly relevant and important, primarily to reduce eutrophication in surface waters. Using sewage sludge biochar as an adsorbent for phosphate removal from wastewater offers an opportunity to reuse sewage sludge (SS) and return phosphorus to the biogeochemical cycle. In this study, the efficiency of two phosphate removal methods - batch adsorption and fixed-bed column process – was investigated using pyrolyzed sewage sludge biochar (PSSB) produced at different temperatures (300 °C, 400 °C, 500 °C, 600 °C). In the batch adsorption experiment, direct mixing of 600 °C pyrolyzed sewage sludge biochar with wastewater resulted in a relatively low phosphate removal efficiency (only about 18 %) at an initial phosphate concentration of 100 mg/l. In contrast, the fixed-bed column process, using PSSB as a filter for phosphate adsorption, showed significantly better results. The highest phosphate removal efficiency (up to 90%) was achieved after 30 min of filtration, using an initial phosphate concentration of 30 mg/l initial and biochar pyrolyzed at 600 °C.
Czasopismo
Rocznik
Tom
Strony
72--81
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
autor
- Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Lithuania
Bibliografia
- 1. Almanassra, I.W., Mckay, G., Kochkodan, V., Ali Atieh, M. & Al.-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409, 128211. DOI:10.1016/J.CEJ.2020.128211
- 2. Deng, L., Shi, Z., Li, B., Yang, L., Luo, L. & Yang, X. (2014). Adsorption of Cr(VI) and phosphate on Mg-Al hydrotalcite supported kaolin Clay prepared by ultrasound-assisted coprecipitation method using batch and fixed-bed systems. Industrial and Engineering Chemistry Research, 53(18), pp. 7746-7757. DOI:10.1021/ie402917s
- 3. Havukainen, J., Nguyen, M.T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I. & Linnanen, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, pp. 221-229. DOI:10.1016/J.WASMAN.2016.01.020
- 4. He, L., Chen, Y., Sun, F., Li, Y., Huang, W. & Yang, S. (2022). Controlled release of phosphorus using lanthanum-modified hydrochar synthesized from water treatment sludge: Adsorption behavior and immobilization mechanism. Journal of Water Process Engineering, 50, 103319, pp. 1−14. DOI:10.1016/j. jwpe.2022.103319.
- 5. Herzel, H., Krüger, O., Hermann, L. & Adam, C. (2016). Sewage sludge ash — A promising secondary phosphorus source for fertilizer production. Science of The Total Environment, 542, pp. 1136-1143, DOI: 10.1016/J.SCITOTENV.2015.08.059
- 6. Jamaludin, N., Rashid, S. A. & Tan, T. (2019). Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots. Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 109-134. DOI:10.1016/B978-0-12-815757- 2.00005-X
- 7. Januševičius, T., Mažeikienė, A., Danila, V. & Paliulis, D. (2022). The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass Conversion and Biorefinery, 1, pp. 1-10. DOI:10.1007/s13399-021-02295y
- 8. Jourak, A., Frishfelds, V., Lundström, T. S., Herrmann, I.. & Hedström, A. (2011). Modeling of Phosphate Removal by Filtra P in Fixed-bed Columns, https://www.diva-portal.org/smash/get/ diva2:1004231/FULLTEXT01.pdf
- 9. Jozwiakowska, K. & Marzec M. (2020). Efficiency and reliability of sewage purification in long-term exploitation of the municipal wastewater treatment plant with activated sludge and hydroponic system. Archives of Environmental Protection, 46 (3), pp. 30-41. DOI:10.24425/aep.2020.134533
- 10. Jung, K. W., Jeong, T. U., Choi, J. W., Ahn, K. H. & Lee, S. H. (2017). Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 244, pp. 23-32. DOI:10.1016/J.BIORTECH.2017.07.133
- 11. Khanmohammadi, Z., Afyuni, M. & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management and Research, 33(3), pp. 275-283. DOI:10.1177/0734242X14565210
- 12. Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G. & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of The Total Environment, 687, pp. 460- 469. DOI:10.1016/J.SCITOTENV.2019.05.400
- 13. Liu, J., Huang, Z., Chen, Z., Sun, J., Gao, Y. & Wu, E. (2020). Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water. Journal of Cleaner Production, 257, 120322. DOI:10.1016/J. JCLEPRO.2020.120322
- 14. Lv, M.Y., Yu H.X. & Shang, X.Y. (2023). Sludge derived biochar: A review on the influence of synthesis conditions on environmental risk reduction and removal mechanism of wastewater pollutants. Archives of Environmental Protection, 49 (2), pp. 3-15. DOI:10.24425/aep.2023.145892
- 15. Ma, Y., Li, P., Yang, L., Wu, L., He, L., Gao, F., Qi, X. & Zhang, Z. (2020). Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal. Ecotoxicology and Environmental Safety, 196, 110550. DOI:10.1016/J.ECOENV.2020.110550
- 16. Mekonnen, D.T., Alemayehu, E., Lennartz, B., Unuabonah, E. & Taubert, A. (2021). Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials, pp. 14(19), 5466. DOI:10.3390/MA14195466
- 17. Mo, J., Li, Q., Sun, X., Zhang, H., Xing, M., Dong, B. & Zhu, H. (2024). Capacity and Mechanisms of Phosphate Adsorption on Lanthanum-Modified Dewatered Sludge-Based Biochar. Water, 16, 418, pp. 1−16. DOI:10.3390/w16030418
- 18. Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V. & Bui, X.T. (2015). Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study. Science of The Total Environment, 523, pp. 40-49. DOI:10.1016/J.SCITOTENV.2015.03.126
- 19. Nobaharan, K., Novair, S.B., Lajayer, B.A. & van Hullebusch, E.D. (2021). Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water 2021, 13(4), pp. 517. DOI:10.3390/W13040517
- 20. Rangabhashiyam, S., Lins, P.V. dos S., Oliveira, L. M.T. de M., Sepulveda, P., Ighalo, J.O., Rajapaksha, A.U. & Meili, L. (2022). Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environmental Pollution, 293, 118581. DOI:10.1016/J.ENVPOL.2021.118581
- 21. Wang, Z., Miao, R., Ning, P., He, L. & Guan, Q. (2021). From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal. Journal of Colloid and Interface Science, 593, pp. 434-446. DOI:10.1016/J. JCIS.2021.02.118
- 22. Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., Li, X., & Zeng, G. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, pp. 537-544. DOI:10.1016/J.BIORTECH.2017.09.136
- 23. Yin, Q., Liu, M. & Ren, H. (2019). Biochar is produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management, 249, 109410. DOI:10.1016/J. JENVMAN.2019.109410
- 24. Zhang, D., Zhang, K., Hu, X., He, Q., Yan, J. & Xue, Y. (2021). Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis, and fixed bed filtration. Journal of Hazardous Materials, 408, 124860. DOI:10.1016/J.JHAZMAT.2020.124860
- 25. Zhou, K., Barjenbruch, M., Kabbe, C., Inial, G. & Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective. Journal of Environmental Sciences, 52, pp. 151-159. DOI:10.1016/J.JES.2016.04.010
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-469deda4-17e3-4371-b14b-5241b7609256
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.