PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Osteoblasts response to novel chitosan/agarose/hydroxyapatite bone scaffold – studies on MC3T3-E1 and hFOB 1.19 cellular models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since it is known that various cell lines may ex-press different behaviours on the scaffolds surface, a comprehensive analysis using various cellular mo-dels is needed to evaluate the biomedical potential of developed biomaterials under in vitro conditions. Thus, the aim of this work was to fabricate bone scaffolds composed of a chitosan-agarose matrix reinforced with nanohydroxyapatite and compare the biological response of two cell lines, i.e. mouse calvarial preosteoblasts (MC3T3-E1 Subclone 4) and human foetal osteoblasts (hFOB 1.19). Within this study, the osteoblasts number on the scaffold surface and the osteogenic markers level produced by MC3T3-E1 and hFOB 1.19 cells were determined. Furthermore, changes in calcium and phosphorous ions concentrations in the culture media dedicated for MC3T3-E1 and hFOB 1.19 were estimated after the biomaterial incubation. The obtained results proved that the fabricated biomaterial is characterized by biocompatibility and osteoconductivity since it favours osteoblasts attachment and growth. It also supports the production of osteogenic markers (collagen, bALP, osteocalcin) by MC3T3-E1 and hFOB 1.19 cells. Interestingly, the developed biomaterial exhibits different ion reactivity values in the two culture media dedicated for the mentioned cell lines. It was also revealed that mouse and human osteoblasts differ in the cellular response to the fabricated scaffold. Thus, the use of at least two various cellular models is recommended to carry out a reliable biological characterization of the novel biomaterial. These results demonstrate that the tested bone scaffold is a promising biomaterial for bone regeneration applications, however further biological and physicochemical experiments are essential to fully assess its biomedical potential.
Rocznik
Strony
24--29
Opis fizyczny
Bibliogr. 23 poz., wykr., zdj.
Twórcy
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
Bibliografia
  • [1] O’Brien F.J.: Biomaterials & scaffolds for tissue engineering. Materials Today 14(3) (2011) 88-95.
  • [2] Stevens M.M.: Biomaterials for bone tissue engineering. Materials Today 11(5) (2008) 18-25.
  • [3] Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B.: Scaffolds for bone tissue engineering: State of the art and new perspectives. Materials Science and Engineering C 78 (2017) 1246-1262.
  • [4] Thevenot P., Hu W., Tang L.: Surface chemistry influence implant. Current Topics in Medical Chemistry 8(4) (2008) 270-280.
  • [5] Zivic F., Affatato S., Trajanovic M.Schnabelrauch M., Grujovic N., Choy K.L.: Biomaterials in clinical practice. Advances in clinical research and medical devices. Springer International Publishing AG, Switzerland 2018.
  • [6] Przekora A.: The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompati-bility testing of bone scaffolds for tissue engineering applications. Materials Science and Engineering C 97 (2019) 1036-1051.
  • [7] Karageorgiou V., Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26 (27) (2005) 5474-5491.
  • [8] Sachot N., Engel E., Castano O.: Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. Current Organic Chemistry 18 (18) (2014) 2299-2314.
  • [9] Subia B., Kundu J., Kundu S.C.: Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Engineering, InTech Croatia (2010) 141-158.
  • [10] Chang H-I., Wang Y.: Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. InTech Croatia (2011) 569-588.
  • [11] Rabe M., Verdes D., Seeger S.: Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science 162(1-2) (2011) 87-106.
  • [12] Kazimierczak P., Benko A., Palka K., Canal C., Kolodynska D., Przekora A.: Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaf-folds. Journal of Materials Science and Technology(2020) article in press.
  • [13] Przekora A., Ginalska G.: Enhanced differentiation of osteo-blastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Biomedical Materials 10(1) (2015).
  • [14] Gustavsson J., Ginebra M.P., Engel E., Planell J.: Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media. Acta Biomaterialia 7(12) (2011) 4242-4252.
  • [15] Przekora A., Czechowska J., Pijocha D. Ślósarczyk A., Ginalska G.: Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro? Central European Journal of Biology 9(3) (2014) 277-289.
  • [16] Xu J., Liu L., Munroe P., Xie Z.H.: Promoting bone-like apatite formation on titanium alloys through nanocrystalline tantalum nitride coatings. Journal of Materials Chemistry B 3(19) (2015) 4082-4094.
  • [17] Kim H.M., Himeno T., Kawashita M., Kokubo T., Nakamura T.: The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. Journal of the Royal Society Interface 1(1) (2004) 17-22.
  • [18] Shibata H., Yokoi T., Goto T., Kim Ill Y., Kawashita M., Kikuta K., Ohtsuki Ch.: Behavior of hydroxyapatite crystals in a simulated body fluid: effects of crystal face. Journal of the Ceramic Society of Japan 121(9) (2013) 807-812.
  • [19] Cao N., Chen X.B., Schreyer D.J.: Influence of calcium ions on cell survival and proliferation in the context of an alginate hydrogel. ISRN Chemical Engineering (2012) 1-9.
  • [20] Tang Z., Li X., Tan Y., Fan H., Zhang X.: The material and biolo-gical characteristics of osteoinductive calcium phosphate ceramics. Regenerative Biomaterials 5(1) (2018) 43-59.
  • [21] Czekanska E.M., Stoddart M.J., Ralphs J.R., Richards R.G., Hayes J.S.: A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. Journal of Biomedical Materials Research - Part A 102 (8) (2014) 2636-2643.
  • [22] American Type Culture Collection: MC3T3 E1 Subclo-ne 4 (ATCC® CRL 2593™), https://www.lgcstandards-atcc.org/products/all/CRL-2593.aspx?geo_country=pl#generalinformation, Accessed date: 15 July 2019.
  • [23] Subramaniam M., Jalal S.M., Rickard D.J., Rickard D.J., Harris S.A., Bolander M.E., Spelsberg T. C.: Further characteriza-tion of human fetal osteoblastic hFOB 1.19 and hFOB/ERα cells: Bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. Journal of Cellular Biochemistry 87(1) (2002) 9-15.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4697273e-c24a-4b7f-b64b-e0b4c3e6fd79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.