PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and improvement of the fragmentation quality of blasted rock using digital image processing: the case of the Kef Lahmer quarry, N-E Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mining industry plays a significant role in the extraction and processing of various ore materials (phosphate, copper, iron, gold, aggregates and others), contributing to industrial and economic development. Rock fragmentation is a fundamental operation and a complex element in mining activities influenced by multiple parameters, including geological and geometric factors, explosive load parameters, and others related to the details of the execution of the blasting plan. The effectiveness of blasting depends on factors such as the geological structure, volume, optimal size of rocks to be blasted, and compliance with safety conditions. To achieve desirable outcomes, it is crucial to make informed decisions regarding the types and quantities of explosives to be used, along with other principal parameters of drilling-blasting design. Continuous evaluation of rock fragmentation is essential for optimizing blasting plans by contributing to the improvement of the quality-price ratio under favorable environmental and safety conditions. This study aims to analyze and enhance the quality of rock fragmentation resulting from blasting activities in the Kef Lahmar-Setif limestone quarry (northeast Algeria), which is characterized by significant rock mass fracturing. This fracturing will be carefully analyzed in order to arrive at an accurate blasting plan for the structure of the studied rock massif. As the aim of the research is to optimize the blasting plan to generate maximum gas pressure and minimize shock pressure due to the existing fractures in the rock mass. in order to test this hypothesis, we conducted several blasting tests by modifying the charge rate of the explosives used (Anfomil and Marmanite III), while maintaining the same parameters in the blasting plan for each test. The goal was to achieve optimal fragmentation. The particle size of the blasted rock pile was analyzed using WipFrag software, which utilizes image analysis techniques.
Rocznik
Tom
Strony
87--99
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Mining Department, Faculty of Earth Sciences, Badji Mokhtar University Annaba, Algeria
  • Department of Mines and Géo-technology, Echahid Echeikh Larbi Tébessi University Tebessa, Algeria
  • Department of Mines and Géo-technology, Echahid Echeikh Larbi Tébessi University Tebessa, Algeria
  • Department of Mining Engineering, Metallurgy and Materials. Laboratory of Mines, Metallurgy and Materials (L3M), National Higher School of Technology and Engineering, Annaba, Algeria
  • 4 Mining Department, Faculty of Earth Sciences, Badji Mokhtar University Annaba, Algeria
Bibliografia
  • Afeni T.B., Okeleye E.O. 2020. Microsoft paint imaging system – a photogrammetric approach to fragmentation measurement in rock and aggregate production. https://doi.org/10.33271/ mining14.03.015
  • Akbari M., Lashkaripour G., Bafghi A.Y., Ghafoori M. 2015. Blastability evaluation for rock mass fragmentation in Iran central iron ore mines. International Journal of Mining Science and Technology, 25(1), 59–66.
  • Babaeian M., Ataei M., Sereshki F., Sotoudeh F., Mohammadi S. 2019. A new framework for evaluation of rock fragmentation in open pit mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 325–336.
  • Bamford T., Esmaeili K., Schoellig A.P. 2021. A deep learning approach for rock fragmentation analysis. International Journal of Rock Mechanics and Mining Sciences, 145, 104839.
  • Baranowski P., Kucewicz M., Gieleta R., Stankiewicz M., Konarzewski M., Bogusz P., Małachowski J. 2020. Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations. International Journal of Impact Engineering, 140, 103543.
  • Bharath M., Karthik G., Kiran C. 2020. Fragmentation analysis by WipFrag software. Journal of Mines, Metals and Fuels, 68(1).
  • Faramarzi F., Mansouri H., Farsangi M.E. 2013. A rock engineering systems based model to predict rock fragmentation by blasting. International Journal of Rock Mechanics and Mining Sciences, 60, 82–94.
  • Fredj M., Hafsaoui A., Talhi K., Menacer K. 2015. Study of the Powder Factor in Surface Bench Blasting. Procedia Earth Planet Sci., 15, 892–899. https://doi.org/10.1016/j. proeps.2015.08.142
  • Fredj M., Riadh B., Abderrazak S., Radouane N., Saoudi M., Ibsa T. 2019. Distribution Analysis of Rock Fragments Size Based on the Digital Image Processing and the Kuz-Ram Model Cas of Jebel Medjounes Quarry. Asp. Min. Miner. Sci., 2(4), 1–5. https://doi.org/10.31031/ amms.2019.02.000545
  • Idowu K.A., Olaleye B.M., Saliu M.A. 2021. Analysis of blasted rocks fragmentation using digital image processing (Case study: Limestone quarry of Obajana Cement Company). Mining of Mineral Deposits.
  • Inanloo Arabi Shad H., Sereshki F., Ataei M., Karamoozian M. 2018. Investigation of the rock blast fragmentation based on the specific explosive energy and in-situ block size. International Journal of Mining and Geo-Engineering, 52(1), 1–6.
  • Kılıç A.M. 2009. Influence of rock mass properties on blasting efficiency.
  • Khandelwal M., Monjezi M. 2013. Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mechanics and Rock Engineering, 46, 389–396.
  • Kulatilake P.H.S.W., Qiong W., Hudaverdi T., Kuzu C. 2010. Mean particle size prediction in rock blast fragmentation using neural networks. Engineering Geology, 114(3–4), 298–311.
  • Maerz N.H., Franklin J.A., Rothenburg L. 1987. Measurement of rock fragmentation by digital analysis. 6th Congress of ISRM, 1–14.
  • Maerz N.H., Palangio T.C., Franklin J.A. 2018. WipFrag image based granulometry system. In: Measurement of Blast Fragmentation. Routledge, 91–99. https://doi.org/10.1201/9780203747919-15
  • Manzoor S., Gustafson A., Schunnesson H., Tariq M., Wettainen T. 2022. Rock fragmentation measurements in sublevel caving: field tests at LKAB’s Malmberget mine. Conference Caving 2022: Fifth International Conference on Block and Sublevel Caving.
  • Mouloud N. 2017. Etude d’un modèle de mesure de la fragmentation par le tir. Doctoral dissertation, Universite Badji Mokhtar Annaba.
  • Nanda S., Pal B.K. 2020. Analysis of blast fragmentation using WipFrag. J. Image, 5(6).
  • ONEX (Office national des substances explosives). National Explosive Substances Board, Algeria.
  • Outal S. 2006. Quantification par analyse d’images de la granulométrie des roches fragmentées: amélioration de l’extraction morphologique des surfaces, amélioration de la reconstruction stéréologique. Doctoral dissertation. École Nationale Supérieure des Mines de Paris. https:// pastel.hal.science/pastel-00579926/file/Outal.pdf
  • Roy M.P., Paswan R.K., Sarim M.D., Kumar S., Jha R., Singh P.K. 2016. Rock fragmentation by blasting. A review. Journal of Mines, Metals and Fuels, 64(9), 424–431.
  • Saadatmand Hashemi A., Katsabanis P. 2020. The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation. Rock Mechanics and Rock Engineering, 53, 2327–2346.
  • Saadoun A., Boukarm R., Fredj M., Isik Y. 2023. Study the influence of the choice of blasting zones on the rock fragmentation quality and the stability of benches in open-pit mining by numerical modeling. International Multidisciplinary Scientific Geo-Conference: SGEM, 23(1.1), 439–446. https://doi.org/10.5593/sgem2023/1.1/s03.53
  • Saadoun A., Fredj M., Boukarm R., Hadji R. 2022. Fragmentation analysis using digital image processing and empirical model (KuzRam): A comparative study. J. Min. Inst., 257, 822–832. https://doi.org/10.31897/PMI.2022.84
  • Salmi E.F., Sellers E.J. 2021. A review of the methods to incorporate the geological and geotechnical characteristics of rock masses in blastability assessments for selective blast design. Engineering Geology, 281, 105970.
  • Sanchidrián J.A., Segarra P., López L.M. 2007. Energy components in rock blasting. International Journal of Rock Mechanics and Mining Sciences, 44(1), 130–147.
  • Sazid M., Saharan M.R., Singh T.N. 2016. Enhancement of the explosive energy utilization with the application of new stemming contrivance. International Journal of Innovative Science and Modern Engineering, 4(2), 2319–6386.
  • Sereshki F., Hoseini S.M., Ataei M. 2016. Blast fragmentation analysis using image processing. International Journal of Mining and Geo-Engineering, 50(2), 211–218.
  • Shehu S.A., Yusuf K.O., Hashim M.H.M. 2022. Comparative study of WipFrag image analysis and Kuz-Ram empirical model in granite aggregate quarry and their application for blast fragmentation rating. Geomechanics and Geoengineering, 17(1), 197–205.
  • Shirani Faradonbeh R., Monjezi M., Jahed Armaghani D. 2016. Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Engineering with Computers, 32, 123–133.
  • Singh B.K., Mondal D., Shahid M., Saxena A., Roy P.N.S. 2019. Application of digital image analysis for monitoring the behavior of factors that control the rock fragmentation in opencast bench blasting: A case study conducted over four opencast coalmines of the Talcher Coalfields, India. Journal of Sustainable Mining, 18(4), 247–256.
  • Sudhakar J., Adhikari G.R., Gupta R.N. 2006. Comparison of fragmentation measurements by photographic and image analysis techniques. Rock Mechanics and Rock Engineering, 39(2), 159–168.
  • Tavakol Elahi A., Hosseini M. 2017. Analysis of blasted rocks fragmentation using digital image processing. Case study: limestone quarry of Abyek Cement Company. International Journal of Geo-Engineering, 8, 1–11. https://doi.org/10.1186/s40703-017-0053-z
  • Wang S., Xu Y., Xia K., Tong T. 2021. Dynamic fragmentation of microwave irradiated rock. Journal of Rock Mechanics and Geotechnical Engineering, 13(2), 300–310.
  • Yang R., Ding C., Yang L., Lei Z., Zhang Z., Wang Y. 2018. Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation. International Journal of Rock Mechanics and Mining Sciences, 112, 47–54.
  • Zhang Z.X., Hou D.F., Guo Z., He Z., Zhang Q. 2020. Experimental study of surface constraint effect on rock fragmentation by blasting. International Journal of Rock Mechanics and Mining Sciences, 128, 104278.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46964ddd-ca8b-46e5-bf7e-9e0aced1106d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.