PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Taguchi method in the optimization of synthesis of cellulose-MgO bionanocomposite as antibacterial agent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, optimal conditions to form cellulose-MgO nanocomposite with antibacterial properties were evaluated. Applying the Taguchi method, 9 experiments were designed and the effects of different concentrations of biopolymers cellulose (0.5, 1 and 2 mg/ml), MgO nanoparticles (2, 4 and 8 mg/ml) and stirring times (30, 60 and 90 min) on antibacterial activity of synthesized nanocomposites were assessed. The characterizations of products were investigated by dynamic light scattering (DLS), raman spectroscopy, scanning electron microscope (SEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results showed that the nano-composite produced in the conditions of experiment 9 (MgO 8 mg/ml, cellulose 2 mg/ml and stirring time of 60 min) has the strongest antibacterial activity. The outcomes of both methods of colony forming units (CFU) and disc diffusion indicated that the antibacterial activity of cellulose-MgO nanocomposite was significantly higher than its components (P <0.05). Thermal analysis indicated improvement in the thermal stability of the cellulose biopolymer after the formation of the nanocomposite. Due to the improvement of the antibacterial properties of cellulose-MgO nanocomposite compared to its components, we can use it as a new antibacterial agent in the fields of pharmaceutical, medicine and dentistry.
Rocznik
Strony
116--122
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
  • Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Department of Oral and Maxillofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
Bibliografia
  • 1. Mozaffari H.R. Izadi B. Sadeghi M. Rezaei F. Sharifi R. & Jalilian F. (2016). Prevalence of oral and pharyngeal cancers in Kermanshah province Iran: A ten-year period. Int. J. Cancer. Res. 12(3–4)169–175. DOI: 10.3923/ijcr.2016.169.175.
  • 2. Mozaffari H.R. Payandeh M. Ramezani M. Sadeghi M. Mahmoudiahmadabadi M. & Sharifi R. (2017). Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Współczesna. Onkol. 21(4) 299–305. DOI: 10.5114/wo.2017.72400.
  • 3. Benson J.R. & Jatoi I. (2012). The global breast cancer burden. Future. Oncol. 8(6) 697–702. DOI: 10.2217/fon.12.61.
  • 4. Mozaffari H R. Zavattaro E. Abdolahnejad A. Lopez-Jornet P. Omidpanah N. Sharifi R. Sadeghi M. Shooriabi M. & Safaei M. (2018). Serum and Salivary IgA IgG and IgM Levels in Oral Lichen Planus: A Systematic Review and Meta-Analysis of Case-Control Studies. Medicina. 54(6) 99. DOI: 10.3390/medicina54060099.
  • 5. Mozaffari H.R. Sharifi R. & Sadeghi M. (2018). Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study. Centr. Eur. J. Immunol. 43(1) 103–108. DOI: 10.5114/ceji.2018.74880.
  • 6. Veehof M.M. Oskam M.J. Schreurs K.M. & Bohlmeijer E.T. (2011). Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 152(3) 533–542. DOI: 10.1016/j.pain.2010.11.002.
  • 7. Sharifi R. Khazaei S. Mozaffari H.R. Amiri S.M. Iranmanesh P. & Mousavi S.A. (2017). Effect of massage on the success of anesthesia and infiltration injection pain in maxillary central incisors: Double-blind crossover trial. Dent. Hypotheses. 8(3) 61–64. DOI: 10.4103/denthyp.denthyp_52_16
  • 8. Taran M. Etemadi S. & Safaei M. (2017). Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II III) oxide–levan nanocomposite. J. Appl. Polym. Sci. 134 44613. DOI: 10.1002/app.44613.
  • 9. Laxminarayan R. Matsoso P. Pant S. Brower C. Rottingen J.A. Klugman K. & Davies S. (2016). Access to effective antimicrobials: a worldwide challenge. Lancet. 387(10014) 168–175. DOI: 10.1016/S0140-6736(15)00474-2.
  • 10. Mead P. S. Slutsker L. Dietz V. McCaig L.F. Bresee J.S. Shapiro C. Griffin P.M. & Tauxe R.V. (1999). Food-related illness and death in the United States. Emerg. Infect. Dis. 5(5) 607. DOI: 10.3201/eid0505.990502.
  • 11. Elnashaie S.S. Danafar F. & Rafsanjani H.H. (2015). Nanotechnology for chemical engineers. Springer p. 273. DOI: 10.1007/978-981-287-496-2.
  • 12. Zhang L. Jiang Y. Ding Y. Povey M. & York D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3) 479–489. DOI: 10.1007/s11051-006-9150-1.
  • 13. Pachla A. Lendzion-Bielun Z. Moszynski D. Markowska-Szczupak A. Narkiewicz U. Wrobel R.J. Guskos N. & Zołnierkiewicz G. (2016). Synthesis and antibacterial properties of Fe3O4-Ag nanostructures. Pol. J. Chem. Tech. 18(4) 110–116. DOI: 10.1515/pjct-2016-0079.
  • 14. Dizaj S.M. Lotfipour F. Barzegar-Jalali M. Zarrintan M.H. & Adibkia K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44 278–284. DOI: 10.1016/j.msec.2014.08.031.
  • 15. Hezaveh H. & Muhamad I.I. (2012). Impact of metal oxide nanoparticles in oral release properties of pH-sensitive hydrogel nanocomposites. Int. J. Biol. Macromolec. 50 1334–1340. DOI: 10.1016/j.ijbiomac.2012.03.017.
  • 16. Hotze E.M. Phenrat T. & Lowry G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means electronic or mechanical including photocopying recording or any information storage and retrieval system without permission in writing from the publisher. J. Environ. Qual. 39(6) 1909–1924.
  • 17. Safaei M. & Taran M. (2017). Fabrication characterization and antifungal activity of sodium hyaluronate-TiO2 bionanocomposite against Aspergillus niger. Materials Letters 207 113–116. DOI: 10.1016/j.matlet.2017.07.038.
  • 18. Safaei, M., Taran, M. & Imani M.M. (2019). Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. Mater. Sci. Eng. C. 101, 323–329. DOI: 10.1016/j.msec.2019.03.108.
  • 19. Klemm D. Heublein B. Fink H.P. & Bohn A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. A. Chem. Int. Ed. 44(22) 3358–3393. DOI: 10.1002/anie.200460587
  • 20. Fryczkowska B. & Wiechniak K. (2017). Preparation and properties of cellulose membranes with graphene oxide addition. Pol. J. Chem. Tech. 19(4) 41–49. DOI: 10.1515/pjct-2017-0066.
  • 21. Hu W. Chen S. Yang J. Li Z. & Wang H. (2014). Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 101 1043–1060. DOI: 10.1016/j.carbpol.2013.09.102.
  • 22. Petersen N. & Gatenholm P. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 91(5) 1277. DOI: 10.1007/s00253-011-3432-y.
  • 23. Shao W. Liu H. Liu X. Sun H. Wang S. & Zhang R. (2015). pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int. J. Biol. Macromolec. 76 209–217. DOI: 10.1016/j.ijbiomac.2015.02.048.
  • 24. Li B. Zhang Y. Yang Y. Qiu W. Wang X. Liu B. Wang Y. & Sun G. (2016). Synthesis characterization and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr. Polym. 152 825–831. DOI: 10.1016/j.carbpol.2016.07.070
  • 25. Nguyen V.T. Flanagan B. Gidley M.J. & Dykes G.A. (2008). Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57 449–453. DOI: 10.1007/s00284-008-9228-3
  • 26. Pathania D. Kumari M. & Gupta V.K. (2015) Fabrication of ZnS–cellulose nanocomposite for drug delivery antibacterial and photocatalytic activity. Mater. Des. 87 1056–1064. DOI: 10.1016/j.matdes.2015.08.103
  • 27. Safaei M. & Taran M. (2017). Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int. J. Biol. Macromolec. 104 449–456. DOI: 10.1016/j.ijbiomac.2017.06.016.
  • 28. Muhamad I.I. Asgharzadehahmadi S.A. Zaidel D.N. A. & Supriyanto E. (2013). Characterisation and Evaluation of Antibacterial Properties of Polyacrylamide Based Hydrogel Containing Magnesium Oxide Nanoparticles. Int. J. Biol. Biomed. Eng. 7(3) 108–113.
  • 29. Jin T. & He Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 13(12) 6877–6885. DOI: 10.1007/s11051-011-0595-5.
  • 30. Leung Y.H. Ng A. Xu X. Shen Z. Gethings L.A. Wong M.T. Chan C. Guo M.Y. Ng Y.H. Djurisic A.B. & Lee P.K. (2014). Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10(6) 1171–1183. DOI: 10.1002/smll.201302434.
  • 31. Tang Z.X. & Lv B.F. (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3) 591–601. DOI: 10.1590/0104-6632.20140313s00002813.
  • 32. Yadollahi M. Gholamali I. Namazi H. & Aghazadeh M. (2015). Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int. J. Biol. Macromolec. 74 136–141. DOI: 10.1016/j.ijbiomac.2014.11.032.
  • 33. Zajac A. Hanuza J. Wandas M. & Dyminska L. (2015). Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta A. 134 114–120. DOI: 10.1016/j.saa.2014.06.071.
  • 34. Sharma R.K. (2012). A study in thermal properties of graft copolymers of cellulose and methacrylates. Adv. Appl. Sci. Res. 3(6) 3961–3969.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-469479c8-1683-44a5-b092-5f186ab9ae8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.