PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the biomass pyrolysis parameters on the quality of biocarbon obtained from rape straw, rye straw and willow chips

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article the results of studies conducted regarding the thermal processing of rape straw, rye straw and willow chips applying various parameters of the pyrolysis process are presented. Samples of biomass were subject to thermal processing at various temperatures and process durations, assessing the impact of the applied conditions on physicochemical parameters of the obtained pyrolysis products. The contents of phosphorus, potassium, magnesium, carbon and nitrogen were analysed. The studies have indicated that the pyrolysis process can be used to refine biomass, among others obtained from straw and chips, in the context of using it for fertilization. Modification of the pyrolysis process parameters (temperature, time) significantly impacted the concentration of the analysed macroelements. It has been stated that the highest content of phosphorus, potassium and magnesium in biocarbon (rape straw, rye straw and willow chips) can be obtained performing pyrolysis at the temperature of 5000C for 10 minutes. A significant impact of the pyrolysis parameters – temperature and time on the total content of macroelements in the obtained biocarbon was observed. The highest contents of phosphorus, potassium and magnesium were observed in the case of biocarbon obtained at the temperature of 5000C during 10 minutes, while the temperature of 4000C and duration of 10 minutes allowed to obtain the maximum content of carbon and nitrogen.
Słowa kluczowe
Twórcy
autor
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture
autor
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture
autor
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture
autor
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture
autor
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture
Bibliografia
  • 1. Atkinson C.J., Fitzgerald J.D., Hipps N.A., 2010: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: review. Plant Soil, 337, 1-18.
  • 2. Bajcar M., PuchalskiCz., Saletnik B., Zaguła G., Fabisiak A., Malecka K., 2015: Optymalizacja punktu temperaturowego i czasu trwania procesu toryfikacji wybranych produktów odpadowych rolniczej produkcji roślinnej [Optimization of the temperature point and duration of the torrefaction process of selected waste products of agricultural crop production]. Wydawnictwo Uniwersytetu Rzeszowskiego [Publishing House of the University of Rzeszow], 41-67.
  • 3. Beesely L., Moreno-Jiménez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T., 2011: A review of biochars potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269-3282.
  • 4. Bis Z., 2012: Biowęgiel - powrót do przeszłości, szansa dla przyszłości, Czysta Energia, [Biocarbon - return to the past, chance for the future, Pure Energy] 6.
  • 5. Enders A., Hanley K., Whitman T., Joseph S., Lehmann J., 2012: Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653.
  • 6. Hossain M.K., Strezov V., Chan K.Y., Ziolkowski A., Nelson P.F., 2011: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92, 223-228.
  • 7. Ibarrola R., Shackely S., Hammond J., 2012: Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Management, 32, 859-868.
  • 8. Karhu K., Mattila T., Bergstrom I., Regina K., 2011: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study, Agriculture, Ecosystems and Environment, 140, 309-313.
  • 9. Klimiuk E., Pawłowska M., Pokój T., 2012: Biopaliwa. Technologie dla zrównoważonego rozwoju [Biofuels. Technologies for sustainable development]. Warsaw.
  • 10. Kratofil M., Zarzycki R., Kobyłecki R., Bis Z., 2015: Analiza procesu toryfikacji biomasy [Analysis of the biomass torrefaction process]. RUTMech, XXXII, 87 (2/15), 119-126.
  • 11. Kwapinski W., Byrne C.M.P., Kryachko E., Wolfram P., Adley C., Leahy J.J., Novotny E.H.,Hayes M.H.B., 2010: Waste Biomass Valorization, 1, 17 72189.
  • 12. Lehman J., 2007: Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387.
  • 13. Lehman J., Joseph S. (ed)., 2009: Biochar for Environmental Management: Science and Technology. Earthscan, London.
  • 14. Lehmann J., Rilling M.C, Thies J., Masiello C.A., Hockaday W.C., Crowley D., 2011: Biochar effectson soil biota - A review. Soil Biotechnology and Biochemistry, 43, 1812-1836.
  • 15. Lewandowski W.M., Radziemska E., Ryms M., Ostrowski P., 2010: Nowoczesne metody termochemiczne konwersji biomasy w paliwa gazowe, ciekłe i stałe [Modern thermochemical methods of biomass conversion into gas, liquid and solid fuels]. Proceedings of ECOpole, 4(2).
  • 16. Malińsa K., 2012: Biowęgiel odpowiedzią na aktualne problem ochrony środowiska [Biocarbon as a response to current problems of environmental protection]. InżynieriaiOchronaŚrodowiska [Engineering and Environmental Protection], 15, 4, 387-403.
  • 17. Nigussie A., Kissi E., Misganaw M., Ambaw G., 2012: Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactucasativa) grown in chromium polluted soils. American- Eurasian Journal of Agricultural and Environmental Sciences, 12(3), 369-376.
  • 18. Piotrowski K., Wiltowski T., Mondal K., 2004: Biomasa – kłopotliwe pozostałości czy strategiczne rezerwy czystej energii? Cz. 1, Czysta Energia [Biomass – problematic remains or strategic reserves of pure energy? P. 1, Pure Energy], no. 10, p. 16-19.
  • 19. Saletnik B., Bajcar M., Zaguła G., Czernicka M., PuchalskiCz., 2015: Optimization of Physicochemical Properties of Torrefied Products Obtained by Thermal Processing of Oat Straw. TEKA.Commission of Motorization and Power Industry in Agriculture, 15, 4, 155-160.
  • 20. Sànchez M.E., Lindao E., Margaleff D., Martínez O., Morán A., 2009: Pyrolysis of agricultural residues from rape and sunflower: production and characterization of bio2fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis, 85, 142-144.
  • 21. Song W., Guo M., 2012: Quality variations of poultry litter biochar generated at different pyro lysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
  • 22. PN-EN 14780:2011(U). Solid biofuels – preparing samples.
  • 23. PN-EN 14778:2011(U). Solid biofuels – collecting samples.
  • 24. PN-EN 15104:2011(U). Solid biofuels – marking the total content of carbon, hydrogen and nitrogen – instrumental method.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4691f177-c028-406a-89d7-f3f8b2703323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.