PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advancing and receding contact angles of water with corresponding surfaces of freshly fractured calcite, fluorite and mica were measured. The corresponding surfaces were obtained by mechanical splitting of a small lump of each mineral into two pieces. Theoretical considerations revealed that depending on the mineral cleaving plane, surfaces created by splitting into halves can be either identical or entirely different as far as their surface chemical composition is concerned. It was experimentally established that receding and advancing contact angles measured on the corresponding surfaces of fluorite, calcite and mica were identical for the sessile drop method. When the contact angle was measured by the captive bubble approach, there were small differences in the contact angles measured on the corresponding surfaces of fluorite. It was most probably due to surface irregularities and roughness, and therefore different times needed to rupture the liquid film between the bubble and solid surface.
Rocznik
Strony
192--201
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
autor
  • Dumlupinar University, Mining Engineering Department, Kutahya, Turkey
autor
  • Dumlupinar University, Mining Engineering Department, Kutahya, Turkey
autor
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
autor
  • Dumlupinar University, Mining Engineering Department, Kutahya, Turkey
autor
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
Bibliografia
  • Adamson AW., Physical chemistry of surfaces, 5th ed., Wiley & Sons, New York; 1990.
  • Bakakin V.V., Questions on relation of minerals structure and their flotation properties. J. Struct. Chem. 1960; 1(2): 89-97.
  • Bryant E.M., Bowman R.S., Buckley J.S., Wetting alteration of mica surfaces with polyethoxylated amine surfactants, J. Pet. Sci. Eng. 2006;52: 244–252.
  • Bueno-Tokunaga A., Pérez-Gairbay R., Martínez-Carrillo D., Zeta potential of air bubbles conditioned with typical froth flotation reagents. Int. J. .Miner. Process. 2015; 140: 50-37.
  • Busscher H.J., De Jong H.P., Arends J., Surface free energy of hydroxyapatite, fluoroapatite and calcium fluoride. Mater. Chem. Phys. 1987; 17: 553-558.
  • Chau T.T., A review of techniques for measurement of contact angle and their applicability on mineral surfaces, Miner. Eng. 2009; 22: 213-219.
  • de Leeuw N.H., Parker S.C., Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem. B 1998: 102: 2914-2922.
  • Drelich J., Miller J.D., Good R.J., The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques. J. Colloid Interface Sci. 1996; 179: 37–50.
  • Drzymala J., Characterization of materials by Hallimond tube flotation. Part 2: Maximum size of floating particles and contact angle. Int. J. Miner. Process. 1994a; 42: 153–167.
  • Drzymala J., Hydrophobicity and collectorless flotation of inorganic materials. Adv. Colloid Interface Sci. 1994b; 50: 143-186.
  • Eral H.B., ‘t Mannetje D.J.C.M., Oh J.M., Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 2013; 291: 247-260.
  • Fricke M., Volkmer D., Crystallization of calcium carbonate beneath insoluble monolayers: suitable model of mineral –matrix interactions in biomineralization? In: Biomineralization I: Crystallization and Self-Organization Process, Kensuke Naka (volume editor), Topics in Current Chemistry, 270, 1-41, Springer_Verlag Berlin; 2007.
  • Gao Z., Sun W., Hu Y., Liu X., Anisotropic surface broken bond properties and wettability of calcite and fluorite crystals. Trans. Nonferrous Met. Soc. China 2012; 22: 1203-1208.
  • Hazen R.M., Chiral crystal faces of common rock-forming minerals. In: Progress in Biological Chirality, G. Palyi, C. Zucchi, L. Caglioti eds, Elsevier, Amsterdam; 2004.
  • Herder P., Vagberg L., Stenius P., ESCA and contact angle studies of the adsorption of aminosilanes on mica. Colloids and Surfaces 1988-1989;34(2): 117-132.
  • Janczuk B., Bruque J.M., Gonzalez-Martin M.L., Moreno del Pozo J., Wettability and surface tension of fluorite. Colloid Surf. A-Physicochem. Eng. Asp., 1993; 75: 163-168.
  • Janicki M.J., Drzymala J., Kowalczuk P.B., Structure and surface energy of both fluorite halves after cleaving along selected crystallographic planes. Physicochem. Probl. Miner. Process. 2016; 52(1): 451–458.
  • Kowalczuk P.B., Drzymala J., Contact angle of bubble with an immersed-in-water particle of different materials. Ind. Eng. Chem. Res. 2011; 50(7): 4207–4211.
  • Kowalczuk P.B., Drzymala J., Surface flotation of particles on liquids. Principles and applications, Colloid Surf. A-Physicochem. Eng. Asp. 2012; 393: 81–85.
  • Kowalczuk P.B., Drzymala J., Some remarks on attachment of a gas bubble to another phase both immersed in a water. Physicochem. Probl. Miner. Process. 2016; 52(1): 147–154.
  • Kuwahara Y., Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Phys. Chem. Minerals 2001; 28: 1-8.
  • Mielczarski J.A., Sholt J., Pokrovsky O.S., Surface speciation of dolomite and calcite in aqueous solutions. In: Encyclopedia of Surface and Colloid Science, vol. 8., 2nd edition, P. Somasundaran (ed.), Taylor and Francis, pp. 5965-5978; 2006.
  • Montes Ruiz-Cabello F.J., Rodríguez-Valverde M.A., Cabrerizo-Vilchez M.A., Contact angle hysteresis on polymer surfaces: An experimental study. J. Adhes. Sci. Technol. 2011; 25: 2039–2049.
  • Muller M., Fiedler T.H., Schimmel T.H., Nanostructuring of calcite surfaces by tribomechanical etching with the tip of an atomic force microscope. In: Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales, B.Bhushan (ed.). II. Mathematics, Physics and Chemistry Vol. 10. Springer Science + Business Media Dordrecht, Proc. NATO Adv. Study Institute on Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales, Keasthely, Hungary, p. 487-494. http://dx.doi.org/10.1007/978-94-010-0736-8_34; 2001.
  • Nishimura S., Tateyama K., Tsunematsu K., Jinnai K., Zeta potential measurement of muscovite mica basal plane-aqueous solution interface by means of plane interface technique. J. Colloid Interface Sci. 1992; 152(2): 359-367.
  • Okayama T., Keller D.S., Luner P., The wetting of calcite surfaces. J. Adhes., 1997; 63(1-3): 231-252.
  • Oswald P., Pieranski P., Nematic and cholesteric liquid crystals. The Liquid Crystals Book Series, Taylor and Francis, Boca Raton; 2005.
  • Palache C., Berman H., Frondel C., The System of Mineralogy, Volume II, seventh edition: John Wiley & Sons, New York; 1951.
  • Schultz R.A., Jensen M.C., Bradt R., Single crystal cleavage of brittle materials. Int. J. Fract. 1994; 65: 291-312.
  • Shang J., Flury M., Harsh J.B., Zollars R.L., Comparison of different methods to measure contact angles of soli colloids. J. Colloid Interface Sci. 2008; 328: 299-307.
  • Tasker P.W., The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics 1979; 12: 4977–4983.
  • Wu W., Giese Jr. R.F., van Oss C.J., Change in surface properties of solids caused by grinding. Powder Technol. 1996; 89: 129-132.
  • Yang Ch., Dabros T., Li D., Czarnecki J., Masliyah J.H.. Measurements of the zeta potential of gas bubbles in aqueous solutions by mocroelectrophoresis method. J. Colloid Interface Sci. 2001; 243: 128–135.
  • Young T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 1804;95: 65–87.
  • Zawala J, Drzymala J., Malysa K. Natural hydrophobicity and flotation of fluorite. Physicochem. Probl. Miner. Process. 2007;41: 5-11.
  • Zawala J, Drzymala J, Malysa K., An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble. Int. J. Miner. Process. 2008;88: 72-79.
  • Zhang X. Wang X. Miller JD., Wetting of selected fluorite surfaces by water. Surface Innovations 2014;3: 39-48.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-468f83b6-2cb1-41d7-9733-b9ada7ddf6f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.