PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermomechanical States in Arc Weld Surfaced Steel Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagram and Johnson-Mehl-Avrami and Kolomogorov law for diffusive transformations and Koistinen-Marburger for martensitic transformation. Stress state of a bar subjected to thermo-mechanical loads is described assuming the plane cross section hypothesis and using integral equations of stress equilibrium of a bar as well as simple Hook’s law. Stresses in the elastic-plastic state are determined by iteration using solutions with a variable elastic modulus of elasticity, conditioned by tensile curves. Dependence of stresses on strains is assumed on the basis of tensile curves of particular structures, taking into account the influence of temperature. There were performed calculations of the temperature field, phase transformations, strains and stresses for GMAW surfacing of a cuboid element made of S235 steel. Authors’ programs, made in Borland Delphi, were used for calculations.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-201 Czestochowa, 21 Armii Krajowej Str., Poland
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-201 Czestochowa, 21 Armii Krajowej Str., Poland
Bibliografia
  • [1] E. Tasak, Metallurgy of welding, JAK, Cracov 2008.
  • [2] D. Radaj, Heat effects of welding. Temperature field, residual stress, distortion, Springer-Verlag, Berlin 1992.
  • [3] J. Pilarczyk, J. Pilarczyk, Arc welding and surfacing of metals, Slask sp. z o. o., Katowice 1996.
  • [4] A. Bokota, S. Iskierka, Numerical analysis of phase transformations and residual stresses in steel cone-shaped elements hardened by induction and flame methods, Int. J. Mech. Sci. 40, 6, 617- 629 (1998).
  • [5] L.E . Lindgren, Computational welding mechanics, Woodhead Publishing and Maney Publishing, Cambridge 2007
  • [6] B. Chen, X. H. Peng, J. H. Fan, S.T . Sun, A viscous-elastoplastic constitutive equation incorporating phase transformation with the application to the residual stress analysis for welding process, J. Mater. Proces. Technol. 205, 316-321 (2008).
  • [7] D. Deng, FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects, Materials Design 30, 359-366. (2009).
  • [8] J.A. Goldak, M. Akhlaghi, Computational welding mechanics, Springer, New York 2010.
  • [9] W. Piekarska, M. Kubiak, Z. Saternus, Numerical simulation of deformations in T-joint welded by the laser beam, Arch. Metall. Mater. 58, 1391 – 1396 (2013).
  • [10] N. T. Nguyen, Thermal analysis of welds, WITPress, Southampton, Boston 2004.
  • [11] P. Lacki, K. Adamus, Numerical simulation of the elektron beam welding process, Computers and Structures 89, 977 – 985 (2011).
  • [12] W. Piekarska, M. Kubiak, Theoretical investigations into heat transfer in laser-welded steel sheets, J. Them. Anal. Calorim 110, 159 – 166 (2012).
  • [13] S. Joshi, J. Hildebrand, A. S. Aloraier, T. Rabczuk, Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate, Comput. Mater. Sci. 69, 559-565 (2013).
  • [14] A. Ghosh, N. Barman, H. Chattopadhyay, S. Hloch, A study of thermal behaviour during submerged arc welding, Strojniški vestnik – J. Mech. Eng., 59 (5), 333 – 338 (2013).
  • [15] P. Hrabe, R. Choteborsky, M. Navratilova, Influence of welding parameters on geometry of weld deposit bead. In: Int. Proc. Conf. Economic Eng. Manufacturing Systems, Brasov, Regent, 10 3(27) 291-294 (2009).
  • [16] J. Winczek, Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source, Int. J. Heat Mass Transfer 53, 5774-5781 (2010).
  • [17] J. Winczek, New approach to modeling of temperature field in surfaced steel elements, Int. J. Heat Mass Transfer, 54, 4702–4709 (2011).
  • [18] P. R. Vishnu, W. B. Li, K. E. Easterling, Heat-flow model for pulsed welding, Mater. Sci. Techn. 7, 649-659 (1991).
  • [19] P. J. Modenesi, R. I. Reis, A model for melting rate phenomena in GMA welding, J. Mater. Proc. Technol. 189, 199-205 (2007).
  • [20] W. Piekarska, M. Kubiak, A. Bokota, Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joint, Archives of Metallurgy and Materials 56, 409-421 (2011).
  • [21] M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Physics, 7, 1103-1112 (1939).
  • [22] R. Parkitny, J. Winczek, Modelling of phase transformations during multipass surfacing, In:. Conf. Proc. XXXVIII Sympozjon Modelling in Mechanics, Silesian University of Technology, Gliwice, 219-224 (1999).
  • [23] D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall. 7 59-60 (1959).
  • [24] A. Bokota, T. Domański, Numerical analysis of thermo-mechanical phenomena of hardening process of elements made of carbon steel C80U, Arch. Metall. Mater. 52, 277 – 288 (2007).
  • [25] T. Domański, A. Bokota, Numerical models of hardening phenomena of tools steel base on the TTT and CCT diagrams, Arch. Metall. Mater. 56, 325 – 344 (2011).
  • [26] J. Winczek, A simplified method of predicting stresses in surfaced steel rods, J. Mater. Proc. Techn. 212, 1080 – 1088 (2012).
  • [27] A. Bokota, R. Parkitny, Modelling of thermal, structural and mechanical phenomena in hardening processes of steel elements. In: Informatics in Metal Technology, Silesian University of Technology, Gliwice, 257 – 298 (2003).
  • [28] A. Klimpel, M. Balcer, A.S. Klimpel, A. Rzeźnikiewicz, The effect of the method and parameters in the GMA surfacing with solid wires on the quality of pudding welds and the content of the base material in the overlay, Welding Int. 20, 845-850 (2006).
  • [29] J. Brózda, J. Pilarczyk, M. Zeman, TTT-welding diagrams transformation of austenite, Śląsk, Katowice 1983.
  • [30] J. Winczek, A. Kulawik, Dilatometric and hardness analysis of C45 steel tempering with different heating-up rates, Metalurgija, 51 (1), 9 – 12 (2012).
  • [31] J. Gawąd, D. Szeliga, A. Bator, V. Pidvysockyy, M. Pietrzyk, Interpretation of the tensile test results interpretation based on two criterion optimization, In: Proc. 14. Conf. KomPlasTech, Informatics in Metal Technology, ed. M. Pietrzyk et al., Akapit, Cracow, 27-34 (2004).
  • [32] P. M. M. Vila Real, R. Cazeli, L. Simoes da Silva, A. Santiago, P. Piloto, The effect of residual stresses in the lateral-torsional buckling of steel I-beams at elevated temperature, J. Construct. Steel Research 60, 783-793 (2004).
  • [33] M. Melander, A computional and experimental investigation of induction and laser hardening, Linkoping Studies in Science and Technology, Dissertation No 124, Linkoping Univeristy (1985).
  • [34] J. Lian, Z. Jiang, J. Liu, Theoretical model for the tensile work hardening behaviour of dual-phase steel, Mater. Sci. Eng. A147, 55 – 65 (1991).
  • [35] S. K. Kim, Y. M. Kim, Y. J. Lim, N. J. Kim, Relationship between yield ratio and the material constants of the swift equation, Metals Materials Int. 12, No 2 131-135 (2006).
  • [36] J. Winczek, The analysis of stress states in steel rods surfaced by welding, Archiv. Metall. Mater. 58, 1243 – 1252 (2013).
  • [37] P. H. Chang, T. L Teng, Numerical and experimental investigations on the residual stresses of the butt-welded joints, Comput. Mater.Sci. 29, 511 –522 (2004).
  • [38] W. Jiang, Z. Liu, J. M. Gong, S. T. Tu, Numerical simulation to study the effect of repair width on residual stresses of stainless steel clad plate, Int. J. Pres. Ves. Pip. 87, 457 – 463 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-468cbb5c-d172-4e2d-bdcb-e3413d443029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.