PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrospinning of polymeric fibres: an unconventional view on the influence of surface tension on fibre diameter

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Elektroprzędzenie włókien polimerowych – niekonwencjonalny pogląd na wpływ naprężenia powierzchniowego na średnice włókien
Języki publikacji
EN
Abstrakty
EN
The production of regular and bead-free electrospun polymeric fibres requires an adequate combination of different parameters applied in the experimental setup viz. voltage for electrodeposition, viscosity of the solution, density of the polymeric support, the distance between electrodes and the geometry of the spinneret. Determination of the physical balance of forces on the droplet during fibre production was explored and provides relevant theoretical information about the surface tension and radius of polymeric fibres. Based on these predictions, we prepared polymeric electropun fibres of poly (vinyl alcohol), poly (vinyl pyrrolidone) and Eudragit® L100 in order to analyse non-conventional physical properties of experimental systems such as droplet stiffness and their influence on the diameter of resulting fibres.
PL
Produkcja za pomocą elektroprzędzenia regularnych włókien polimerowych, wolnych od zgrubień wymaga dobrania odpowiedniej kombinacji różnych parametrów stanowiska przędącego takich jak np. napięcie między elektrodami, lepkość roztworu przędzalniczego, gęstość, odległość pomiędzy elektrodami i geometria układu przędącego. Badano fizycznie określony balans sił działający na wypychaną kroplę roztworu podczas tworzenia włókna. Badania eksperymentalne dostarczyły odpowiednich teoretycznych informacji o naprężeniu powierzchniowym i średnicy tworzonych włókien polimerowych. W oparciu o uzyskane informacje przygotowano elektroprzędzenie włókien z alkoholu poliwinylowego, alkoholu poliwinylopirolidowego i preparatu Eudragit® L100. Następnie na podstawie wcześniejszych rozważań i uzyskanych wyników eksperymentalnych przeprowadzono analizę wpływu poszczególnych czynników na średnicę otrzymywanych włókien.
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Institute of Research in Materials Science, Federal University of Săo Francisco Valley, Juazeiro, Brazil
  • Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
  • Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
  • Institute of Research in Materials Science, Federal University of Săo Francisco Valley, Juazeiro, Brazil
Bibliografia
  • 1. Ma D, Xin Y, Gao M, Wu J. Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. b-Environ. 2014; 147: 49-57.
  • 2. Hassan MS, Amna T, Khil MS. Synthesis of high aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity. Ceram. Int. 2014; 40: 423-427.
  • 3. Hieu NT, Baik SJ, Chung OH, Park JS. Fabrication and characterization of electrospun carbon nanotubes/titanium dioxide nanofibers used in anodes of dye-sensitized solar cells. Synth. Met. 2014; 193: 125-131.
  • 4. Jin EM, Park JY, Zhao XG, Lee IH, Jeong SM, Gu HB. Photovoltaic properties of TiO2–ZrO2 fiber composite electrodes for dye-sensitized solar cells. Mater. Lett. 2014; 126: 281-284.
  • 5. Yang S, Nair AS, Ramakrishna S. Conversion efficiency enhancement of CdS quantum dot-sensitized electrospun nanostructured TiO2 solar cells by organic dipole treatment. Mater. Lett. 2014; 116: 345-348.
  • 6. Dargaville BL, Vaquette C, Rasoul F, Cooper-White JJ, Campbell JH, Whittaker AK. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Acta Biomater. 2013; 9: 6885-6897.
  • 7. Hong CH, Ki SJ, Jeon JH, Che HL, Park IK, Kee CD, Oh IK. Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos Sci Technol 2013; 87:135-141.
  • 8. Ha YM, Amna T, Kim MH, Kim HC, Hassan MS, and Khil MS. Novel silicificated PVAc/POSS composite nanofibrous mat via facile electrospinning technique: potential scaffold for hard tissue engineering. Colloid Surface B 2013; 102: 795-802.
  • 9. Mouthuy PA, Crossley A, Ye H. Fabrication of calcium phosphate fibres through electrospinning and sintering of hydroxyapatite nanoparticles. Mater. Lett. 2013; 106: 145-150.
  • 10. Celebioglu A, Aytac Z, Umu OCO, Dana A, Tekinay T, Uyar T. One-step Synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohyd. Poly. 2014; 99: 808-816.
  • 11. Pant B, Pant HR, Barakat NAM, Park M, Jeon K, Choi Y, Kim HY. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram. Int. 2013; 39: 7029-7035.
  • 12. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008; 29: 1989-2006.
  • 13. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014; 185: 12-21.
  • 14. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014; 39: 862-890.
  • 15. Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013; 38(6): 963-991.
  • 16. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010; 28: 325-347.
  • 17. Tucker N, Stanger J, Staiger MP, Razzaq H, Hofman K. The history of the science and technology of electrospinning from 1600 to 1995. J. Eng. Fiber. Fabr. 2012; 7: 63-73.
  • 18. Cooley JF. Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids. Patent 06385, GB, 1900.
  • 19. Formhals A. Process and apparatus for preparing artificial threads. Patent 1975504,USA, 1934.
  • 20. Doshi J, Reneker DH. Electrospinning process and application of electrospun fibers. J. Electrostat. 1995; 35: 151-160.
  • 21. McCann JT, Li D, Xia YN. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem. 2005; 15: 735-738.
  • 22. Picciani PHS, Soares BG, Medeiros ES, Souza Junior FG, Wood DF, Orts WJ, Mattoso LHC. Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin fibers: process and statistical modeling using a non-gaussian approach. Macromol. Theor. Simul. 2009; 18: 528-536.
  • 23. Costa RGF, Ribeiro C, Mattoso LHC. Morphological and photocatalytic properties of PVA/TiO2 nanocomposite fibers produced by electrospinning. J. Nanosci. Nanotechn. 2010; 10: 5144-5152.
  • 24. de Oliveira HP, Albuquerque Jr JJF, Nogueiras C, Rieumont J. Physical chemistry behavior of enteric polymer in drug release systems. Int. J. Pharm. 2009; 366: 185-189.
  • 25. de Oliveira HP, Tavares GF, Nogueiras C, Rieumont J. Physico-chemical analysis of metronidazole encapsulation processes in Eudragit copolymers and their blending with amphiphilic block copolymers. Int. J. Pharm. 2009; 380: 55-61.
  • 26. Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 1914; 3: 69-91.
  • 27. Zeleny J. Instability of electrified liquid surfaces. Phys. Rev. 1917; 10:1-6.
  • 28. Zeleny J. Electrical discharges from pointed conductors. Phys. Rev.1920; 16: 102-125.
  • 29. Taylor G. Electrically driven jets. Proc. R. Soc. Lond. A. 1969; 313: 453-475.
  • 30. Drozin VG. The electrical dispersion of liquids as aerosols. J. Colloid. Sci. 1955; 10: 158-164.
  • 31. Baumgarten PK. Electrostatic spinning of acrylic microfibers. J. Colloid. Interf. Sci. 1971; 36: 71-79.
  • 32. Gañán AM. Cone-Jet Analytical Extension of Taylor's Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying. Phys. Rev. Lett. 1997; 79: 217-220.
  • 33. Gañán AM. The surface charge in electrospraying: its nature and its universalscalinglaws. J. Aerosol. Sci. 1999; 30: 863-872.
  • 34. Hohman MM, Shin YM, Rutledge GC, Brenner MP. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids. 2001; 13: 2201-2220.
  • 35. Hohman MM, Shin YM, Rutledge GC, Brenner MP. Electrospinning and electrically forced jets. II. Applications. Phys Fluids 2001; 13: 2221-2236.
  • 36. Wan YQ, Guo Q, Pan N. Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Num. Simul. 2004; 5: 5-8.
  • 37. Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001; 90: 4836-4846.
  • 38. Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001; 89: 3018-3026.
  • 39. Yarin AL, Chase GG, Liu W, Doiphode SV, Reneker DH. Liquid drop growth on a fiber. Aiche. J. 2006; 52: 217-227.
  • 40. Han T, Reneker DH, Yarin AL. Pendulum-like motion of straight electrified jets. Polymer 2008; 49: 2160-2169.
  • 41. 41.Han T, Yarin AL, Reneker DH. Viscoelastic electrospinning jets: initial stresses and elongation rheometry. Polymer 2008;49:1651-1658.
  • 42. Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000; 87: 4531-4547.
  • 43. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer 2008; 49: 2387-2425.
  • 44. Gans DM, Harkins WD. The drop weight method for the determination of surface tension. The effect of an inclination of the tip upon the drop weight. J. Am. Chem. Soc. 1930; 52(6): 2287–228.
  • 45. Bailey KC. Determination of Surface Tension by the Drop-Weight Method. Nature 1936; 137: 323-323.
  • 46. Araújo ES, Nascimento MLF, de Oliveira HP. Influence of Triton X-100 on PVA fibres production by electrospinning technique. Fibres & Textiles in Eastern Europe 2013; 21: 39-43.
  • 47. Collins TJ. ImageJ for microscopy. Biotechniques 2007; 43: 25-30.
  • 48. Barboriak DP, Padua AO, York GE, MacFall JR. Creation of DICOM-aware applications using ImageJ. J. Digit. Imaging. 2005;18: 91-99.
  • 49. Rajwa B, Mcnally HA, Varadharajan P, Sturgis J, Robinson JP. AFM/CLSM data visualization and comparison using an open-source toolkit. Microsc. Res. Techniq. 2004; 64: 176-184.
  • 50. Eliceiri KW, Rueden C. Tools for visualizing multidimensional images from living specimens. Photochem. Photobiol. 2005; 81: 1116-1122.
  • 51. DeHoff RT, Rhines FN (Eds.). Quantitative Microscopy. New York: McGraw-Hill, 1968.
  • 52. Kolmogorov AN. Sulla determinazione empirica di una legge di distribuzione. Inst. Ital. Atti. Giorn. 1933; 4: 83-91.
  • 53. Gosset WS. The probable error of a mean. Biometrika 1908; 6: 1-25.
  • 54. Fisher RA. Applications of "Student's" distribution. Metron 1925; 5: 90-104.
  • 55. Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005; 46: 6128-6134.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-468bedea-9e50-4980-a1f2-caf560b73939
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.