Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Automatic text categorization presents many difficulties. Modern algorithms are getting better in extracting meaningful information from human language. However, they often significantly increase complexity of computations. This increased demand for computational capabilities can be facilitated by the usage of hardware accelerators like general purpose graphic cards. In this paper we present a full processing flow for document categorization system. Gram-Schmidt process signatures calculation up to 12 fold decrease in computing time of system components.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
203--205
Opis fizyczny
Bibliogr. 5 poz., rys., tab., wykr., wzory
Twórcy
autor
- AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Cracow, Poland
autor
- AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Cracow, Poland
autor
- AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Cracow, Poland
autor
- AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Cracow, Poland
autor
- AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Cracow, Poland
autor
- AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Cracow, Poland
Bibliografia
- [1] Sebastiani Fabrizio: Machine learning in automated text categorization. ACM computing surveys (CSUR) 34.1 (2002): 1-47.
- [2] Keogh Eamonn, Abdullah Mueen: Curse of dimensionality. Encyclopedia of Machine Learning. Springer US, 2011. 257-258.
- [3] Datar M., Immorlica N., Indyk P., & Mirrokni V. S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the twentieth annual symposium on Computational geometry, June 2004, pp. 253-262. ACM.
- [4] Milde Benjamin, Schneider Michael: Parallel implementation of classical Gram-Schmidt orthogonalization on CUDA graphics cards. TU Darmstadt Fachbereich Informatik Kryptographie und Computeralgebra, 2009.
- [5] Karwatowski M., Russek P., Wielgosz M., Koryciak S., Wiatr K.: Energy Efficient Calculations of Text Similarity Measure on FPGA-Accelerated Computing Platforms. In: International Conference on Parallel Processing and Applied Mathematics, Sept. 2015, pp. 31-40. Springer International Publishing.
Uwagi
EN
This research is supported by statutory founds of AGH UST, Department of Computer Science, Electronics and Telecommunication. No. 11.11.230.017.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-467c0eb2-11ee-4caa-b5c8-ef329977e84a