PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology of Welding Fume Derived from Stainless Steels Arc Welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the research results of fume morphology derived from arc welding of stainless steels of 1.4301 and 1.4828 grade. The analysis was performed using laser diffraction and high-resolution scanning electron microscopy. Welding fume has been classified by the International Agency for Research on Cancer (IARC) as a group of agents with proven carcinogenic effects to human. The assessment of the risk related to exposure to welding fume emission depends on the amount of fume generated, its chemical composition and morphology. The combined analysis of these factors determines the toxicity of fume and its impact on the human body. The results of the fume particle size distribution and the analysis of the shape and chemical composition using SEM with EDS in connection with the determination of the fume emission rate enable to obtain an overall assessment of the health risk as-sociated with welding fume. Such assessment is particularly important during welding processes of corrosion-resistant steels, due to the presence of chromium and nickel compounds in the fume, which are classified as substances with proven carcinogenic effects to human (Group 1 according to IARC guidelines). It was found that 15-17% of particles deriving from arc welding belong to the respirable and tracheal fractions, which are the most harmful due to the penetration beyond the larynx.
Rocznik
Strony
103--108
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
  • Łukasiewicz Research Network - Upper Silesian Institute of Technology, Gliwice, Poland
autor
  • Łukasiewicz Research Network - Upper Silesian Institute of Technology, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Science and Engineering, Department of Metallurgy and Recycling, Katowice, Poland
  • Silesian University of Technology, Faculty of Chemistry, Department of Chemical Engineering and Process Design, Gliwice, Poland
  • Research Network – Institute of Ceramics and Building Materials, Cracow, Poland
autor
  • Research Network – Institute of Ceramics and Building Materials, Cracow, Poland
Bibliografia
  • [1] Juda-Rezler, K., Toczko, B. (2016). Fine dust in the atmosphere Compendium of knowledge about air pollution with suspended dust in Poland. Warsaw: Environmental Monitoring Library. ISBN 978-83-61227-73-1. (in Polish).
  • [2] Antonini, J.M., Lewis, A.B., Roberts, J.R. & Whaley, D.A. (2003). Pulmonary effects of welding fumes: review of worker and experimental animal studies. American Journal of Industrial Medicine. 43(4), 350-360. https://doi.org/10.1002/ajim.10194.
  • [3] Matusiak, J. (2007). The influence of technological conditions for stainless steel welding on fume toxicity. PhD thesis. Gliwice: Politechnika Śląska. (in Polish).
  • [4] Gubenya, I.P. & Yavdoshchin, I.R. (2016). Mechanisms of formation of welding aerosol solid component and paths of its penetration into the living organism. Paton Welding Journal. No. 1. ISSN 0957-798X.
  • [5] Tasak, E. (2008). Welding metallurgy. Kraków. ISBN 978-83-923191-1-5. (in Polish).
  • [6] Lancaster, J.F. (1966). Metallurgy of welding processes. Warszawa: WNT. (in Polish).
  • [7] Linnert, G.E. (1965). Welding metallurgy. vol. 1 Fundamentals. New York: American Welding Society.
  • [8] Linnert, G.E. (1967). Welding metallurgy. vol. 2 Technology. New York: American Welding Society.
  • [9] Welding Metallurgy Module 3. (2024). Retrieved May 9, 2024, from https://www.nrc.gov/docs/ ML1215/ML12157A607.pdf.
  • [10] Ambroziak, A. (2010). Manufacturing techniques. welding. laboratory. Wrocław. ISBN 978-83-7493-592-0. (in Polish).
  • [11] Spiegel-Ciobanu, V.E., Costa, L., Zschiesche, W. (2020). Hazardous substances in welding and allied processes. International Institute of Welding. ISBN 978-3-030-36928-6.
  • [12] Cena, L.G., Chen, B.T. & Keane, M.J. (2016). Evolution of welding-fume aerosols with time and distance from the source. Weld Journal. 95(Suppl), 280-s–285-s.
  • [13] Antonini, J.M., Roberts, J.R., Stone, S., Chen, B.T., Schwegler-Berry, D., Chapman, R., Zeidler-Erdely, P.C., Andrews, R.N. & Frazer, D.G. (2011). Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Archives of Toxicology. 85, 487-498. https://doi.org/10.1007/s00204-010-0601-1.
  • [14] Mei, N., Belleville, L., Cha, Y., Olofsson, U., Odnevall, Wallinder, I., Persson, K.-A. & Hedberg Y.S. (2018). Size-separated particle fractions of stainless steel welding fume particles – A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium. Journal of Hazardous Materials. 342, 527-535. https://doi.org/10.1016/j.jhazmat.2017.08.070.
  • [15] Guha, N., Loomis, D., Guyton, K.Z., Grosse, Y., El Ghissassi, F., Bouvard, V., et al. (2017). Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. The Lancet Oncology. 18(5), 581-582. http://dx.doi.org/10.1016/S1470-2045(17)30255-3.
  • [16] Rahul, M., Sivapirakasam, S.P., Sreejith, M., Vishnu, B.R. & Gomes, J.F.P. (2022). Study on mass concentration and morphology of SMAW fume particles with a new covered electrode using nano-CaTiO3 as an arc stabilizer. Journal of Manufacturing Processes. 84, 230-239. https://doi.org/10.1016/j.jmapro.2022.10.015.
  • [17] Popović, O., Prokić-Cvetković, R., Burzić, M., Lukić, U. & Beljić, B. (2014). Fume and gas emission during arc welding: hazards and recommendation. Renewable and Sustainable Energy Reviews. 37, 509-516. https://doi.org/10.1016/j.rser.2014.05.076.
  • [18] Arpem Steel (2024). Stainless steel AISI 304/ 1.4301 – useful information. Retrieved May 9, 2024, from https://siatkitkane.com.pl/blog/13_stal-nierdzewna-aisi-304-14301-przydatne-informacje.html.
  • [19] Arpem Steel. (2024). Description of 1.4301 steel. Retrieved May 9, 2024, from https://www.aperam.com/product/304-1-4301/
  • [20] Metalcor. (2024). Datasheet of 1.4828 steel. Retrieved May 9, 2024, from http://www.metalcor.de/en/datenblatt/56/
  • [21] Virgamet (2024). X5CrNiSi20-12. 1.4828. AISI 309- Heat resistant steel. Retrieved May 9, 2024, from https://virgamet.com/x15crnisi2012-1-4828-aisi-309-uns-s30900-heat-resistant-steel.
  • [22] Newton, A., Serdar, B., Adams, K., Dickinson, L.M. & Koehler, K. (2021). Lung deposition versus inhalable sampling to estimate body burden of welding fume exposure: A pilot sampler study in stainless steel welders. Journal of Aerosol Science. 153, 105721, 1-11. https://doi.org/10.1016/j.jaerosci.2020.105721.
  • [23] Wyciślik-Sośnierz, J., Matusiak, J., Adamiec, J., Urbańczyk, M., Lemanowicz, M., Kusiorowski, R. & Gerle, A. (2024) Morphology of welding fume derived from stainless steel arc welding. Proceedings. 108(1), 8, 1-5. https://doi.org/10.3390/proceedings2024108008.
  • [24] A.P. Instruments. (2024). Laser particle size analyser – Functional Principle. Retrieved May 9, 2024, from https://apinstruments.pl/aparatura/malvern-panalytical/rodzina-mastersizer/mastersizer-3000/
  • [25] Norhidayah, Abdull, Nur Sarah Irina Muhammad, Khairiah Mohd Mokhtar & Zarifah Shahri (2024). Occurrence, characterization, and transport mechanism of welding fumes particles emitted during the welding process. Journal of Physics: Conference Series. 2688, 012010, 1-12. DOI 10.1088/1742-6596/2688/1/012010.
  • [26] Floros, N. (2018). Welding fume main compounds and structure. Welding in the World. 62, 311-316. https://doi.org/10.1007/s40194-018-0552-3.
  • [18] Arpem Steel (2024). Stainless steel AISI 304/ 1.4301 – useful information. Retrieved May 9, 2024, from https://siatkitkane.com.pl/blog/13_stal-nierdzewna-aisi-304-14301-przydatne-informacje.html
  • [19] Arpem Steel. (2024). Description of 1.4301 steel. Retrieved May 9, 2024, from https://www.aperam.com/product/304-1-4301/
  • [20] Metalcor. (2024). Datasheet of 1.4828 steel. Retrieved May 9, 2024, from http://www.metalcor.de/en/datenblatt/56/
  • [21] Virgamet (2024). X5CrNiSi20-12. 1.4828. AISI 309- Heat resistant steel. Retrieved May 9, 2024, from https://virgamet.com/x15crnisi2012-1-4828-aisi-309-uns-s30900-heat-resistant-steel
  • [22] Newton, A., Serdar, B., Adams, K., Dickinson, L.M. & Koehler, K. (2021). Lung deposition versus inhalable sampling to estimate body burden of welding fume exposure: A pilot sampler study in stainless steel welders. Journal of Aerosol Science. 153, 105721, 1-11. https://doi.org/10.1016/j.jaerosci.2020.105721.
  • [23] Wyciślik-Sośnierz, J., Matusiak, J., Adamiec, J., Urbańczyk, M., Lemanowicz, M., Kusiorowski, R. & Gerle, A. (2024) Morphology of welding fume derived from stainless steel arc welding. Proceedings. 108(1), 8, 1-5. https://doi.org/10.3390/proceedings2024108008.
  • [24] A.P. Instruments. (2024). Laser particle size analyser – Functional Principle. Retrieved May 9, 2024, from https://apinstruments.pl/aparatura/malvern-panalytical/rodzina-mastersizer/mastersizer-3000/
  • [25] Norhidayah, Abdull, Nur Sarah Irina Muhammad, Khairiah Mohd Mokhtar & Zarifah Shahri (2024). Occurrence, characterization, and transport mechanism of welding fumes particles emitted during the welding process. Journal of Physics: Conference Series. 2688, 012010, 1-12. DOI 10.1088/1742-6596/2688/1/012010.
  • [26] Floros, N. (2018). Welding fume main compounds and structure. Welding in the World. 62, 311-316. https://doi.org/10.1007/s40194-018-0552-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4679ddc6-e318-4ff1-a194-89a5fd5012b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.