PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of Real Textile Wastewater by Using Potassium Ferrate(VI) and Fe(III)/H2O2. Application of Aliivibrio Fischeri and Brachionus plicatilis Tests for Toxicity Assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie rzeczywistych ścieków włókienniczych za pomocą żelazianu(VI) potasu i procesu Fe(III)/H2O2: zastosowanie testów Aliivibrio fischeri i Brachionus plicatilis do oceny toksyczności
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibility of applying combined chemical oxidation processes using potassium ferrate(VI) (K2FeO4) and Fe(III)/H2O2 for the treatment of real wastewater from the textile industry characterised by an increased content of organic substances (COD = 1920 mg O2/l). The use of both processes under optimal conditions included the use of the RSM method (Response Surface Methodology) in order to make it possible to decrease the COD of the wastewater by 75.4% (final COD = 472 mg O2/l). The toxicity of wastewater treated under the most favourable conditions, determined using two test organisms (Aliivibrio fischeri and Brachionus plicatilis), decreased by 33 and 45%, respectively. In some cases the method described can be used on a larger scale.
PL
W artykule przedstawiono możliwość aplikacji połączonych procesów utleniania chemicznego z zastosowaniem żelazianu(VI) potasu (K2FeO4 i procesu Fe(III)/ H2O2 do oczyszczania rzeczywistych ścieków pochodzących z przemysłu włókienniczego, charakteryzujących się zwiększoną zawartością substancji organicznych (COD = 1920 mg O2/L). Zastosowanie obu procesów w optymalnych warunkach wyznaczonych przy zastosowaniu metody RSM (Response Surface Methodology) umożliwiło zmniejszenie COD ścieków o 75,4% (472 mg O2/L). Toksyczności ścieków, oczyszczonych w najkorzystniejszych warunkach oznaczona przy zastosowaniu dwóch organizmów testowych (Aliivibrio fischeri i Brachionus plicatilis) zmniejszyła się odpowiednio o 33 i 45%.
Rocznik
Strony
78--84
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Chemiqua Company, Skawińska Str. 25/1, 31-066 Kraków, Poland
  • Central Mining Institute in Katowice, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Gereffi G (2002) Outsourcing and Changing Patterns of International Competition in the Apparel Commodity Chain. A background paper for UNIDO’s. World Industrial Development Report 2001.
  • 2. Lorimer J, Mason TJ, Plattes M, Phull SS, Walton DJ. Degradation of Dye Effluent. Pure and Applied Chemistry 2001; 73: 1957-1968.
  • 3. Robert L, Joseph F, Alexander A. Fisher’s Contact Dermatitis in Textiles and Shoes. BC Decker Incorporation Ontario 2008; 339-401.
  • 4. Burkinshaw S. Chemical Principles of Synthetic Fibre Dyeing. Blackie Academic & Professional, Springer Netherlands 1995.
  • 5. Schmidt A, Bach E, Schollmeyer E. The dyeing of natural fibres with reactive disperse dyes in supercritical carbon dioxide. Dyes and Pigments 2002; 56: 27-35.
  • 6. Moody V, Needles H. Tufted Carpet: Textile Fibres, Dyes, Finishes and Processes. William Andrew Publishing 2004.
  • 7. Phillips D. Environmentally Friendly, Productive and Reliable: Priorities for Cotton Dyes and Dyeing Processes. Journal of Society of Dyers and Colourists 1996; 112: 183-186.
  • 8. UNSD, United Nations Statistics Division 2003.
  • 9. Hassaan MA, El Nemr A. Health and Environment Impacts of Dyes: Mini Review. American Journal of Environmental Science and Engineering 2017; 1(3), 64-67.
  • 10. Moustafa S. Process Analysis & Environmental Impacts of Textile Manufacturing. Dyes and Chemicals 2008.
  • 11. Al-Kdasi A, Idris A, Saed K, Guan C. Treatment of Textile Wastewater by Advanced Oxidation Processes – A Review. Global Nest International Journal 2004; 6: 222-230.
  • 12. Pagga U, Brown D. The Degradability of Dyestuffs: Part II Behaviour of Dyestuffs in Aerobic Biodegradation Tests. Chemosphere 1986; 15: 479-491.
  • 13. Shuchismita D, Ashraful I. A Review on Textile Wastewater Characterization in Bangladesh. Resources and Environment 2015; 5(1), 15-44.
  • 14. Pagga, U, Brown, D. The degradation of dyestuffs. Chemosphere 1986; 15, 479- 491.
  • 15. Banat IM, Nigam P, Singh D, Marchant R. Microbial decolourization of textile-dye-containing effluents. Bioresources Technology 1996; 58: 217-227.
  • 16. Crini G. Non-conventional low-cost adsorbents for dye removal. Bioresources Technology 2006; 97: 1061-1085.
  • 17. Eswaramoorthi S, Dhanapal K, Chauhan DS. Advances in textile waste water treatment: the case for UV ozonation and membrane bioreactor for common effluent treatment plants in Tirupur, Tamil Nadu, India. Environmental Technology Awareness Series, 2008; 1-17.
  • 18. Yuanhao L, Zhonghao D. Study on preparation of potassium ferrate and its application. Green Technology 2011; 11: 105-107.
  • 19. Wood RH. The heat, free energy, and entropy of the ferrate(VI) ion. Journal of the American Chemical Society 1958; 80: 2038-2041.
  • 20. Barbusinski K. Fenton reaction – controversy concerning the chemistry. Ecological Chemistry and Engineering S 2009; 16(3): 347-358.
  • 21. Safarzadeh – Armini A, Bolton JR, Cater SR. The use of iron in advanced oxidation processes. Journal of Advanced. Oxidation Technology 1996; 1: 18-26.
  • 22. ISO 10523:2008 Water quality. Determination of pH.
  • 23. Wei YL, Wang YS, Liu ChH. Preparation of Potassium Ferrate from Spent Steel Pickling Liquid. Metals 2015; 5: 1770- 1787.
  • 24. ISO 15705:2002 Water quality. Determination of the chemical oxygen demand index (ST-COD) – Small-scale sealed-tube method.
  • 25. Bodiroga M. Determination of peracetic acid and hydrogen peroxide in a preparation Vojnosanitetski Pregled 2002; 59(3): 277-9.
  • 26. ISO 11348-3:2007 Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). Method using freeze-dried bacteria.
  • 27. Hassaan MA, El Nemr A, Madkour FF. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. Egyptian Journal of Aquatic Research 2016; 43, 1: 11-19.
  • 28. Snell TW, Persoone G. Acute toxicity bioassays using rotifers. I. A test for brackish and marine environment with Brachionus Plicatilis. Aquatic Toxicology 1989; 14: 65-80.
  • 29. Moradnia M, Panahifard M, Dindarlo K, Jamali HA. Optimizing potassium ferrate for textile wastewater treatment by RSM. Environmental Health Engineering and Management Journal 2016; 3(3): 137- 142.
  • 30. Kos L. Treatment of Textile Wastewater in the Fenton Process in the Presence of Iron and Nickel Nanocompounds. FIBRES & TEXTILES in Eastern Europe 2016; 24, 5(119): 143-150. DOI: 10.5604/12303666.1215540.
  • 31. Nawaz MS, Ahsan M. Comparasion of physic-chemical advamced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal 2014; 53: 717-722.
  • 32. Bohdziewicz J, Dudziak M, Kaminska G, Kudlek E. Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment – analytical problems. Desalination and Water Treatment 2016; 57, 3: 1361-1369.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46776c7d-53cc-41a3-b9ba-581f82932df0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.