PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable management of wastewater: Theoretical design of combined upflow anaerobic reactors and artificial wetlands systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anaerobic digestion (AD) is an adequate alternative to treat wastewater generated from fruit and vegetable processing (FVWW); likewise, in recent years, artificial wetlands (AWs) have been applied as a post-treatment process for anaerobically pre-treated wastewater. The objective of this work was to design a sustainable treatment system for FVWW composed of upflow anaerobic reactors (UASB) with phase separation and an AW system that receive the anaerobically pretreated effluent. Using the design methodologies for the UASB reactors and artificial wetlands with sub-surface flow (AW-SSF), the parameters of the combined AD-AW system that treat a wastewater flow of 300 m3∙d–1 were calculated. The UASB acidogenic system was adjusted to a hydraulic retention time (HRT) of 10 h and organic loading rate (OLR) of 13.84 kg COD m–3∙d–1; meanwhile, the methanogenic and cascade UASB reactors with OLRs of 10.0 and 3.0 kg COD m3∙d–1, and HRTs of 11 and 10 h, respectively, achieve a high COD removal efficiency (above 94%), and an overall biogas production rate of 1.53 m3 of biogas per m3 of reactor capacity per day. According to the results obtained with the theoretical design, anaerobic-wetland combined system achieves an overall efficiency greater than 98%. The wastewater treated by the proposed system will allow the reuse of 30% of the water used in the washing of fruits and vegetables.
Wydawca
Rocznik
Tom
Strony
66--76
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • University of Granma, Study Center for Applied Chemistry, Carretera de Manzanillo Km 17 1/2. Peralejo. Apartado 21 (8559.38 km), 85149 Bayamo, Cuba
  • International SEK University, Faculty of Architecture and Engineering, Quito, Ecuador
  • Center for Molecular Immunology, Santiago de Cuba, Cuba
  • University of Granma, Study Center for Applied Chemistry, Carretera de Manzanillo Km 17 1/2. Peralejo. Apartado 21 (8559.38 km), 85149 Bayamo, Cuba
  • Technical University of Madrid, College of Agricultural, Food and Biosystems Engineering, Spain
  • University of Rostock, Faculty of Agronomy and Crop Science, Rostock, Germany
  • University of Rostock, Faculty of Agronomy and Crop Science, Rostock, Germany
Bibliografia
  • ÁLVAREZ J.A., RUÍZ I., SOTO M. 2008. Anaerobic digesters as a pretreatment for constructed wetlands. Ecological Engineering. Vol. 33 p. 54–67. DOI 10.1016/j.ecoleng.2008.02.001.
  • ARHOUN B., VILLEN-GUZMAN M., VEREDA-ALONSO C., RODRÍGUEZ-MAROTO J. GARCÍA-HERRUZO F., GÓMEZ-LAHOZ C. 2019. Anaerobic co-digestion of municipal sewage sludge and fruit/vegetable waste: Effect of different mixtures on digester stability and methane yield effect of different mixtures on digester stability and methane yield. Journal of Environmental Science and Health. Part A. Vol. 54. Iss. 7 p. 1–7. DOI 10.1080/10934529.2019.1579523.
  • BOUALLAGUI H., LAHDHEB H., BEN-ROMDAN E., RACHDI B., HAMDI M. 2009. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with cosubstrates addition. Journal of Environmental Management. Vol. 90 p. 1844–1849. DOI 10.1016/j.jenvman.2008.12.002.
  • BOUALLAGUI H., TO RRIJOS M., GODON J., MOLETTA R., CHEIKH R., TOUHAMI Y., DELGENES J., HAMDI M. 2004. Two phases anaerobic digestion of fruit and vegetable wastes: Bioreactors performance. Biochemical Engineering Journal. Vol. 21. Iss. 2 p. 193–197. DOI 10.1016/j.bej.2004.05.001.
  • BOUALLAGUI H., TOUHAMI Y., CHEIKH R., HAMDIA M. 2005. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry. Vol. 40 p. 989–95. DOI 10.1016/j.procbio.2004.03.007.
  • CARAMILLO R., RINCÓN J. 2012. Effect of inhibitory compounds on the two-phase anaerobic digestion performance of diluted wastewaters from the alimentary industry. Chemical Engineering Journal. Vol. 193–194 p. 68–76. DOI 10.1016/ j.cej.2012.04.022.
  • CHAN Y., CHONG M., LAW L., HASSELL D. 2009. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal. Vol. 155 p. 1–18. DOI 10.1016.j.cej.2009.06.041.
  • CHERNICHARO C. 2007. Reatores anaeróbios [Anaerobic reactors]. Editorial UFMG pp. 379.
  • CHONG S., SEN T., KAYAALP A., ANG H. 2012. The performance enhancements of UASB reactors for domestic sludge treatment: A state-of-the-art review. Water Research. Vol. 46 p. 3434–3470. DOI 10.1016/j.watres.2012.03.066.
  • DI MARIA F., BARRATTA M. 2015. Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway. Waste Management. Vol. 43 p. 130–136. DOI 10.1016/ j.wasman.2015.06.007.
  • DI MARIA F., SORDI A., CIRULLI G., MICALE C. 2015. Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time. Applied Energy. Vol. 150 p. 9–14. DOI 10.1016/ j.apenergy.2015.01.146.
  • DIAMANTIS V., AIVASIDIS A. 2007. Comparison of single- and two-stage UASB reactors used for anaerobic treatment of synthetic fruit wastewater. Enzyme and Microbial Technology. Vol. 42 p. 6–10. DOI 10.1016/j.enzmictec.2007.07. 014.
  • EDWIGES T., FRARE L., ALINO J., TRIOLO J., FLOTATS X., COSTA M. 2018. Methane potential of fruit and vegetable waste: An evaluation of the semi-continuous anaerobic. Environmental Technology. Vol. 41. Iss. 7 p. 921–930. DOI 10.1080/ 09593330.2018.1515262.
  • EID E., SHALTOUT K., ASAEDA T. 2012. Modeling growth dynamics of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus, Egypt. Ecological Engineering. Vol. 243 p. 63–72. DOI 10.1016/j.ecolmodel.2012.05.028.
  • FAULWETTER J., GAGNON V., SUNDBERG C., CHAZARENC F., BURR M., BRISSON J., CAMPER A., STEIN O. 2009. Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering. Vol. 35 p. 987–1004. DOI 10.1016/j.ecoleng.2008.12.030.
  • GOMES M., SOUZA R., TELES V., MENDES É. 2014. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere. Vol. 103 p. 228–233. DOI 10.1016/j.chemosphere.2013.11. 071.
  • GONZÁLEZ O., DEAS G. 2011. Metodología para el diseño de humedales con flujo subsuperficial horizontal [Design methodology of artificial wetlands with subsurface flow]. Ingeniería Hidráulica y Ambiental. Vol. 32 p. 61–70.
  • GUARDIA-PUEBLA Y., PÉREZ-QUINTERO F., RODRÍGUEZ-PÉREZ S., SÁNCHEZ-GIRÓN V., LLANES-CEDEÑO E., ROCHA-HOYOS J., PERALTA-ZURITA D. 2019. Effect of hydraulic loading rate and vegetation on phytoremediation with artificial wetlands associated to natural swimming pools. Journal of Water and Land Development. Vol. 40 p. 39–51. DOI 10.2478/jwld-2019-0004.
  • JI C., KONG C., MEI Z., LI J. 2017. A review of the anaerobic digestion of fruit and vegetable waste. Applied Biochemistry and Biotechnology. Vol. 183. Iss. 3 p. 906–922. DOI 10.1007/s12010-017-2472-x.
  • LIU W., LIAO B. 2018. Anaerobic co-digestion of vegetable and fruit market waste in LBR + CSTR two-stage process for waste reduction and biogas production. Applied Biochemistry and Biotechnology. Vol. 188. Iss. 1 p. 185–193. DOI 10.1007/s12010-018-2910-4.
  • MASEBINU S, AKINLABI E., MUZENDA E., ABOYADE A. 2018. Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg market. Waste Management. Vol. 75 p. 236–250. DOI 10.1016/j.wasman.2018.02.011.
  • MONTES-GARCÍA M., VIGUERAS-CARMONA S., PÉREZ-VARGAS J., ZAFRA-JIMÉNEZ G., VELASCO-PÉREZ A., CHANG-SOLÍS C. 2019. Two-stage anaerobic digestion of fruit and vegetable wastes. Journal of Biotech Research. Vol. 10 p. 29–37.
  • MU H., ZHAO Y., HUA D., ZHANG X., LI Y., ZHANG J. 2014. Comparision of treatment performance for fruit and vegetable waste (FVW) by single-phase and two-phase anaerobic digestion. Applied Mechanics and Materials. Vol. 535 p. 572–76. DOI 10.4028/www.scientific.net/AMM.535.572.
  • RAJESHWARI K., PANTH D., LATA K., KISHORE V. 2001. A novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Management and Research. Vol. 19. Iss. 4 p. 292–300. DOI 10.1177/ 0734242x0101900405.
  • RAVI P., LINDNER J., OECHSNER H., LEMMER A. 2017. Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresource Technology. Vol. 247 p. 96–102. DOI 10.1016/ j.biortech.2017.09.068.
  • RAYNAL J., DELGENES J., MOLETTA R. 1998. Two-phase anaerobic digestion of solid waste by a multiple liquefaction reactors process. Bioresource Technology. Vol. 65 p. 97–103. DOI 10.1016/S0960-8524(98)00009-1.
  • SHENG K., CHEN X., PAN J., KLOSS R., WEI Y., YING Y. 2013. Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering. Vol. 116 p. 205–212. DOI 10.1016/j.biosystemseng.2013. 08.005.
  • SIDDIQ M., AHMED J., LOBO, M.G., OZADALI F. 2012. Tropical and subtropical fruits: Postharvest physiology, processing and packaging. John Wiley & Sons. USA. ISBN 978-0-8138-1142-0.
  • SMITH D., ALMQUIST C. 2014. The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a benchscale, two-phase anaerobic digestion system. Environmental Technology. Vol. 35. Iss 7 p. 859–867.
  • SOLERA R., ROMERO L., SALES D. 2002. The evolution of biomass in a two-phase anaerobic treatment process during startup. Chemical Biochemical and Engineering Quality. Vol. 16. Iss. 1 p. 25–29. DOI 10.1080/09593330.2013.854398.
  • SRIDEVI V., REMA T., SRINIVASAN S. 2015. Studies on biogas production from vegetable market wastes in a two-phase anaerobic reactor. Clean Technologies and Environmental Policy. Vol. 17 p. 1689–1697. DOI 10.1007/s10098-014-0883-8.
  • VYMAZAL J. 2013. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering. Vol. 61 p. 582–592. DOI 10.1016/j.ecoleng.2013.06.023.
  • VYMAZAL J. 2014. Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering. Vol. 73 p. 724–751. DOI 10.1016/j.ecoleng.2014.09.034
  • WANG X., LI Z., BAI X., ZHOU X., CHENG S., GAO R., SUN J. 2017. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process. Bioresource Technology. DOI 10.1016/j.biortech.2017.10.038.
  • WU L., KOBAYASHI T., LI Y., XU K. 2015. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Conversion and Management. Vol. 106 p. 1174–1182. DOI 10.1016/j.enconman.2015. 10.059.
  • WU Y., WANG C., LIU X., MA H., WU J., ZUO J., WANG K. 2016. New method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresource Technology. Vol. 211 p. 16–23. DOI 10.1016/j.biortech.2016.03.050.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-467653f4-79f2-42a8-8558-9dde6ac69947
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.