PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ambient temperature on reproduction of the red-headed cricket (Gryllus assimilis)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Red-headed crickets were kept in glass insectariums equipped with drinkers, food containers and peat boxes for laying eggs. In the first stage of the experiment, the insects were divided into three groups, kept at 20°C, 25°C and 29°C, respectively. Three days after placing the crickets in the insectariums, the eggs were counted. In the second stage, the eggs (15 pcs.) were placed in boxes with peat in insectariums and exposed to the same temperatures as the females were kept at 20°C, 25°C and 29°C respectively, and the time in which the larvae hatch in each container was observed. It was found that the thermal conditions of the environment influence the number of eggs laid by female Gryllus assimilis and the length of the embryonic period in red-headed crickets. It is estimated that in the temperature range of 20–29°C, increasing the temperature by 1°C shortens the time needed to hatch the larvae from the eggs by 2 days.
Rocznik
Strony
38--44
Opis fizyczny
Bibliogr. 28 poz., fot., wykr.
Twórcy
  • University of Agriculture in Krakow, Department of Zoology and Animal Welfare, al. Mickiewicza 21, 31-120 Kraków, Poland
  • University of Agriculture in Krakow, Department of Zoology and Animal Welfare, al. Mickiewicza 21, 31-120 Kraków, Poland
  • University of Agriculture in Krakow, Department of Zoology and Animal Welfare, al. Mickiewicza 21, 31-120 Kraków, Poland
  • University of Agriculture in Krakow, Department of Zoology and Animal Welfare, al. Mickiewicza 21, 31-120 Kraków, Poland
Bibliografia
  • [1] Gorazdowski MJ, Kaczorowski M. Leksykon zwierząt terraryjnych. Warszawa: Multico Oficyna Wydawnicza; 2005: 42;7–9.
  • [2] Khatun H, Claes J, Smets R, De Winne A, Akhtaruzzaman M, Van Der Borght M. Characterization of freezedried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. European Food Research and Technology. 2021;247(5):1291–1305. https://doi.org/10.1007/s00217-021-03709-x.
  • [3] Finke MD, Dunham SU, Kwabi C. Evaluation of four dry commercial gut loading products for improving the calcium content of crickets, Acheta domesticus. Journal of Herpetological Medicine and Surgery. 2005;15(1):7–12. https://doi.org/10.5818/1529-9651.15.1.7.
  • [4] Megido RC, Sabloni L, Geuensi M, Brostau Y, Alabii T, Blecker C, Drugmand D, Haubrugei E, Francisi F. Edible insects acceptance by Belgian consumers: Promising attitude for entomophagy development. Journal of Sensory Studies. 2014;29(1):14–20. https://doi.org/10.1111/joss.12077.
  • [5] Dagevos H. A literature review of consumer research on edible insects: Recent evidence and new vistas from 2019 studies. Journal of Insects as Food and Feed. 2021;7(3):249–259. https://doi.org/10.3920/JIFF2020.0052.
  • [6] Kędzior R. Bezkręgowce, In: Hędrzak M. et al. Zwierzęta moje hobby. Kraków: Wydawnictwo Kluszczyński; 2008. p. 34–37; 49.
  • [7] Ebeling W. Urban entomology. [Internet] 2002. [cited 2015 Jan 11]. Available from: http://www.insects.ucr.edu/ebeling/ebel12.html.
  • [8] Bellman H. Szarańczaki. Transl. M. Zadrąg. Warszawa: Multico Oficyna Wydawnicza; 2009. p. 10–11, 28, 165.
  • [9] Jura C. Bezkręgowce: podstawy morfologii funkcjonalnej, systematyki i filogenezy. Warszawa: Wydawnictwo Naukowe PWN; 2002. p. 419–420, 589.
  • [10] Wigglesworth V. Życie owadów. Transl. K. Domurat. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne; 1977. p. 25–31, 114–117, 316–317.
  • [11] Błaszczak C. Zoologia: stawonogi. Warszawa: Wydawnictwo Naukowe PWN; 2012. p. 163–178.
  • [12] Chapman RF. The insects structure and function. Cambridge: Cambridge University Press; 1998. p. 325, 334–336, 350, 365–366, 515–528.
  • [13] Jurenka R. Insect physiology. Ames, IA: Iowa State University, Department of Entomology; 2011.
  • [14] Kemsawasd V, Inthachat W, Suttisansanee U, Temviriyanukul P. Road to the red carpet of edible crickets through integration into the human food chain with biofunctions and sustainability: A review. International Journal of Molecular Sciences. 2022;23(3):1801. https://doi.org/10.3390/ijms23031801.
  • [15] Shuiten B. Zwierzęta w terrarium. Transl. J. Borycka- Zakrzewska. Warszawa: REA; 2011. p. 7–13.
  • [16] Lewczuk T. Wpływ temperatury i rodzaju pokarmu na rozwój świerszcza domowego (Acheta domesticus) [Internet]. 2009. [cited 2022 June 5]. Available from: http://terrarium.com.pl/zobacz/wplyw-temperatury-i-rodzaju-pokarmu- na-rozwoj-swierszcza-domowego-acheta-domesticus-2326.html.
  • [17] Adamo SA, Lovett MME. Some like it hot: The effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. The Journal of Experimental Biology. 2011;214:1997–2004. https:// doi.org/10.1242/jeb.056531.
  • [18] Sun BJ, Huebner C, Treidel LA, Clark RM, Roberts KT, Kenagy GJ, Williams CM. Nocturnal dispersal flight of crickets: Behavioural and physiological responses to cool environmental temperatures. Functional Ecology. 2020;34(9):1907–1920. https://doi. org/10.1111/1365-2435.13615.
  • [19] Schmidt-Nielsen K. Fizjologia zwierząt: adaptacja do środowiska. Warszawa: Wydawnictwo Naukowe PWN; 2008.
  • [20] Batcabe JP, Howell JD, Blomquist GJ, Borgeson CE. Effects of developmental age, ambient temperature, and dietary alterations on D12 desaturase activity in the house cricket, Acheta domesticus. Archives of Insect Biochemistry and Physiology. 2000;44(3):112–119. https:// doi.org/10.1002/1520-6327(200007)44:3<112::AIDARCH2>3.0.CO;2-L.
  • [21] Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae), Journal of Insect Physiology. 2010;56(7):822– 830. https://doi.org/10.1016/j.jinsphys.2010.02.010.
  • [22] Hedrick AV. Acoustic communication in insects and anurans: Common problems and diverse solutions. Integrative and Comparative Biology. 2002;42(5):1080–1080. https://doi.org/10.1093/icb/42.5.1080.
  • [23] Beckers OM. Phenotypic plasticity related to temperature induces song variation in the field cricket Gryllus rubens. Ethology. 2020;126(8):781-790. https://doi.org/10.1111/eth.1303.
  • [24] Bale JS. Hayward SAL. Insect overwintering in a changing climate. The Journal of Experimental Biology. 2009;213(6):980–994. https://doi.org/10.1242/jeb.037911.
  • [25] Hilszczański J, Jaworski T. Wpływ zmian temperatury i wilgotności na cykle rozwojowe i znaczenie owadów w ekosystemach leśnych w związku z prawdopodobnymi zmianami klimatycznymi. Leśne Prace Badawcze. 2013;74:345–355.
  • [26] Limberger GM, Nery LEM, Fonseca DBD. Reproductive status modulates mortality rate, lifespan and egg production, but do not the physiological aging in the field cricket Gryllus assimilis (Fabricius, 1775) (Orthoptera: Gryllidae). Neotropical Entomology. 2021;50(2):237–246. https://doi.org/10.1007/s13744-020-00839-x.
  • [27] Booth DT, Kiddell K. Temperature and the energetics of development in the house cricket (Acheta domesticus). Journal of Insect Physiology. 2007;53(9):950–953. https://doi.org/10.1016/j.jinsphys.2007.03.009.
  • [28] Shah AA, Wanapat M. Gryllus testaceus walker (crickets) farming management, chemical composition, nutritive profile, and their effect on animal digestibility. Entomological Research. 2021;51(12):639–649. https://doi.org/10.1111/1748-5967.12557.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4673433b-014d-4ef5-b597-45bf9c6f586f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.