PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Classification Possibility of Coke Breeze by Drag Force

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sintered ore used as blast furnace burden materials is produced by mixing iron ore, coke, and limestone, then burning the coke and sintering the iron ore with the combustion heat. Among the coke charged, A particle size of 0.25 mm or less has an insignificant effect as a heat source and adhere to the surface of other materials to inhibit the reaction between oxygen and raw materials, thereby decreasing the quality of sintered ore. Therefore, to increase combustion efficiency, it is necessary to reduce the ratio of coke breeze in the charged coke. In this study, theoretical calculation, experiment and simulation were conducted to investigate the possibility of size classification by drag force in the process of dropping coke after being transported through a belt conveyor. The height of belt conveyor was at 1m, and velocity of the belt was 1.5, 2.3, and 2.6 m/s, which were considered as experimental variables. After falling, the distribution of coke particle size according to the horizontal travel distance was confirmed, and a fall trajectory prediction formula model was created through the drag model of polydisperse system and compared with the experimental and analysis results.
Twórcy
autor
  • Inha University, Department of Materials Science and Engineering, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
autor
  • Inha University, Department of Materials Science and Engineering, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
  • Inha University, Department of Materials Science and Engineering, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
Bibliografia
  • [1] Greenhouse Gas Inventory and Research Center, Greenhouse Gas Emissions in 2020, www.2050cnc.go.kr/flexer/view/BOARD_ATTACh?storageNo1284 (2022).
  • [2] F. Patisson, O. Mirgaux, Metals 10, 922 (2020).
  • [3] S.H. Yi, W.J. Lee, Y.S. Lee, W.H. Kim, J. of the Korean Inst. of Met. & Mater. 59, 41 (2021).
  • [4] H. Zhang, M. Rao, Z. Fan, Y. Zhang, G. Li, T. Jiang, ISIJ Int. 52, 2139 (2012).
  • [5] D. Zhu, Y. Xue, J. Pan, C. Yang, Z. Guo, H. Tian, X. Wang, Q. Huang, L. Pan, X. Huang, Powder Technol. 373, 727 (2020).
  • [6] X. Fan, G. Wong, M. Gan, X. Chen, Z. Yu, Z. Ji, J. Clean. Prod. 235, 1549 (2019).
  • [7] N. Tahanpesaranedezfuly, A.H. Moghadam, TMS 2012 141st Annual Meeting and Exhibition. Supplemental Proceedings. 1 (2012).
  • [8] D.F. Gonzalez, I.R. Bustinza, J. Mochon, C.G. Gasca, L.F. Verdeja, JOM-J. Min. Met. Mat. S. 68, 2089 (2016).
  • [9] Z. Cheng, J. Yang, L. Zhou, Y. Liu, Z. Guo, Q. Wang, Energy Conversion and Management 125, 254 (2016).
  • [10] T. Umadevi, A.V. Deodhar, S. Kumar, C.S.G. Prasad, M. Ranjan, Ironmak. Steelmak. 35, 567 (2008).
  • [11] L. Xiong, Z. Peng, F. Gu, L. Ye, L. Wang, M. Rao, Y. Zhang, G. Li, T. Jiang, Power Technol. 340, 131 (2018).
  • [12] Korean patent No.10-1023111, March 10 (2011).
  • [13] Korean patent No.10-2020-0122895, October 28 (2020).
  • [14] J.C. Williams, Powder Technol. 15, 245 (1976).
  • [15] K.M. Kim, J.H. Kim, J.H. Kwon, J.A. Lee, J.W. Han, Arh. Metall. Mater. 64, 495 (2019)
  • [16] R. Beetstra, M.A. van der Hoef, J.A.M. Kuipers, AICHE J. 53, 489 (2007).
  • [17] J.H. Jeong, J.I. Choi, J. Korean Powder Metall. Inst. 28, 1 (2021)
  • [18] S. Ueda, T. Kon, H. Kurosawa, S. Natsui, T. Ariwama, H. Nogami, ISIJ Int. 55, 1232 (2015).
  • [19] Altair, Altair AcuSolve Training Manual (2021).
  • [20] Korea Institute of Geoscience and Mineral Resources, TRKO201200005157, scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201200005157&dbt=TRKO&rn=(2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-467016cd-0632-4153-9835-a3c15bc35bf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.