Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, a suitable composition of parameters has been obtained to provide an efficient process of cooling flue gas with complete condensation of water vapour from air-water vapour mixture on a water film in co-current upward flow in the tube of the direct contact heat and mass exchanger. The results showed that the value of the irrigation density depends on the velocity of the air-water vapour mixture and the initial vapour content and should be calculated from an empirical equation. The active pipe height depends on the velocity of the air-water vapour mixture and the initial vapour content and should also be calculated from an empirical equation. For example, if the initial vapour content of the air-water vapour mixture is 11%, the velocity of the mixture is 20.8 m/s the height of the channel should not exceed 0.460 m. The value of the water heating limit temperature increases from 46°C to 62°C with a change in the initial vapour content from 11% to 30%. The present experimental results could be helpful in the design of direct contact heat and mass exchangers for waste heat recovery.
Czasopismo
Rocznik
Tom
Strony
463--482
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Lodz University of Technology, Institute of Turbomachinery, Wolczanska 217/221, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Wolczanska 217/221, 93-005 Lodz, Poland
Bibliografia
- [1] Osakabe M., Ishida K., Yagi K., Itoh T., Ohmasa K.: Condensation heat transfer on tubes in actual flue gas. Heat Transfer – Asian Research. 30(2001), 139–151.
- [2] Qu M., Abdelaziz O., Yin H.: New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement. Energ. Convers. Manag. 87(2014), 175–184.
- [3] Gas Market Report, Q4, Paris, 2023. https://www.iea.org/reports/medium-termgas-report-2023 (accessed 10 June 2023).
- [4] Terhan M., Comakli K.: Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Appl. Therm. Eng. 100(2016), 1007–1015.
- [5] Wang Y., Zhao Q., Zhou Q., Kang Z., Tao W.: Experimental and numerical studies on actual flue gas condensation heat transfer in a left–right symmetric internally finned tube. Int. J. Heat Mass Transf. 64 (2013), 10–20.
- [6] Maalouf S., Elias B.K., Clodic D.: Investigation of direct contact condensation for wet flue-gas waste heat recovery using Organic Rankine Cycle. Energ. Convers. Manag. 107(2016), 96–102.
- [7] Harold R.J., Heimir F.: Direct contact condensers: a literature survey. Tech. Rep. IDO-1523-3, Utah Univ., Salt Lake City 1977.
- [8] Mahood H.B., Campbell A.N., Sharif A.O., Thorpe R.B.: Heat transfer measurement in a three-phase direct-contact condenser under flooding conditions. Appl. Therm. Eng. 95(2016), 106–114.
- [9] Zhu K., Xia J., Xie X., Jiang Y.: Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger. Appl. Therm. Eng. 71(2014), 213–218.
- [10] Zajacs A., Bogdanovics R., Borodinecs A.: Analysis of low temperature lift heat pump application in a district heating system for flue gas condenser efficiency improvement. Sustain. Cities Soc. 57(2020), 102–130.
- [11] Li F., Duanmu L., Fu L., Zhao X.: Application of absorption heat pump and directcontact total heat exchanger to advanced-recovery flue-gas waste heat for gas boiler. Sci. Technol. Built. Environ. 25(2019), 149–155.
- [12] Wang J., Hua J., Fu L., Zhou D.: Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery. Energy198(2020), 117375.
- [13] Zhang C., Yang Y., Fan L., Huang X.: Numerical study on operating characteristics of self-driven total heat recovery system for wet-hot flue gas. Appl .Therm. Eng. 173(2020), 115223.
- [14] Liu H., Zhou X., Fu L.: Heat transfer performance of direct contact flue-gas condensation heat exchanger. HVAC. 44(2014), 97–100.
- [15] Men Y., Liu X., Zhang T.: Analytical solutions of heat and mass transfer process in combined gas-water heat exchanger applied for waste heat recovery. Energy 206(2020), 118095.
- [16] Kalantari H., Amiri L., Ghoreishi-Madiseh S.A.: Analysis of the performance of direct contact heat exchange systems for application in mine waste heat recovery. Int. J. Energ. Res. 46(2022), 290–307.
- [17] Min C., Yang X., He J., Wang K., Xie L., Onwude D. I., Zhang W., Wu H.: Experimental investigation on heat recovery from flue gas using falling film method. Therm. Sci. Eng. Prog. 22(2021), 100839.
- [18] Cui Zh., Du Q., Gao J., Bie R., Li D.: Development of a direct contact heat exchanger for energy and water recovery from humid flue gas. Appl. Therm. Eng. 173(2020),115214.
- [19] Wei H., Huang Sh., Zhang X.: Experimental and simulation study on heat and mass transfer characteristics in direct-contact total heat exchanger for flue gas heat recovery. Appl. Therm. Eng. 200(2022), 117657.
- [20] Miliauskas G., Podia E., Poškas R., Poškas P., Balčius A., Jouhara H.: The modelling of transient phase changes of water droplets in flue gas flow in the range of temperatures characteristic of condensing economizer technologies. Energy 257(2022),124719.
- [21] Li F., Duanmu L., Fu L., Zhao X.: Performances of gas-water direct-contact heat transfer. In: Proc. Cold Climate HVAC 2018 (D. Johansson, H. Bagge, Ĺ. Wahlström, Eds.), SPE, Springer, Lund 2019, 63–67.
- [22] Mahood H.B., Thorpe R.B., Campbell A.N., Sharif A.O.: Experimental measurements and theoretical prediction for the transient characteristic of a two-phase twocomponent direct contact condenser. Appl. Therm. Eng. 87(2015), 161–174.
- [23] Phan T.H., Won S.S., Park W.G.: Numerical simulation of air–steam mixture condensation flows in a vertical tube. Int. J. Heat Mass. Transf. 127(2018) 568–578.
- [24] Dong Ch., Qi R., Zhang L.: Mechanistic modelling of flow and heat transfer in vertical upward two-phase slug flows. Phys. Fluids. 34(2022), 013309.
- [25] Jia Sh., Dong Ch.: Flow and heat transfer model for turbulent-laminar/turbulent gas-liquid annular flows. Appl. Therm. Eng. 219 (2023).
- [26] Bhagwat S.M., Ghajar A.J.: Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined pipes. Exp. Therm. Fluid Sci. 79(2016), 301–318.
- [27] Dong Ch., Hibiki T.: Correlation of heat transfer coefficient for two-component twophase slug flow in a vertical pipe. Int. J. Multiphs. Flow 108(2018), 124–139.
- [28] Varlamov G.B., Romanova K.A., Nazarova I., Daschenko O., Kapustiansky A.: Improvement of energy efficiency and environmental safety of thermal energy through the implementation of contact energy exchange processes. Arch Thermodyn. 38(2017), 4, 127–137.
- [29] Bespalov V.V.: Simulation of natural gas combustion products by humidified air. In: Modern Technologies, Economy, and Education: Proc. All-Russian Scientific and Methodological Conf., Tomsk, December 27-29, 2019, 34–36.
- [30] Galashov N., Tsibulskiy S., Melnikov D., Kiselev A., Gabdullina A.: Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit. MATEC Web of Conf. 110(2017), 1–4.
- [31] Bell I.H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53(2014), 2498–2508.
- [32] Aronov Y.Z.: Contact heating of water by natural gas combustion products. Nedra, Leningrad 1990 (in Russian).
- [33] Sideman S., Moalem D.: Direct contact heat exchangers. Comparison of counter and co-current condensers. Int. J. Multiphas. Flow 1(1974), 555–572.
- [34] Baqir A.S., Mahood H.B., Hameed M.S., Campbell A.N.: Heat transfer measurement in a three-phase spray column direct contact heat exchanger for utilisation in energy recovery from low-grade sources. Energ. Convers. Manag. 126(2016), 342–351.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-466d5a6d-3acf-4a94-b059-9fa5bf18d37c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.