PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simplified-modified algorithm for GLONASS broadcast orbits computation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The orbits of Global Navigation Satellite System (GLONASS) satellites are computed from the broadcast ephemerides using the fourth order of the Runge-Kutta integration method. Usually, the initial conditions used in the integration of the differential equation of satellite motion are the three positions and the three velocities of satellites at the initial time, and the results are the position and velocity at a given time; the luni-solar perturbation is supposed to be constant during the integration interval. The algorithm used is known in the documentation as the simplified algorithm; this algorithm was modified and replaced by the one called in this investigation as the simplified-modified algorithm, where the luni-solar accelerations were taken as variable terms and three linear functions modeling these luni-solar accelerations were added to the simplified algorithm. The ode45 MATLAB solver, based on the fourth and fifth orders of the Runge-Kutta method, was used to solve the differential equations describing the motion of GLONASS satellites in orbit. The data used in this study is the broadcast orbit files of 24 GLONASS satellites between March 1 and 21, 2024. The results obtained showed an improvement of 1.76 m and 0.0027 m/s in the positions and velocities of GLONASS satellites, respectively, when the simplified-modified algorithm was applied, that is, the three luni-solar accelerations were assumed as variable terms.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Algerian Space Agency (ASAL), Centre of Space Techniques (CTS), Department of Space Geodesy, Oran, Algeria
Bibliografia
  • Ardourel V., Jebeile J. (2016) On the presumed superiority of analytical solutions over numerical methods. European Journal for Philosophy of Science, Vol.7, No.2, 201-220. https://doi.org/10.1007/s13194-016-0152-2.
  • Banu M S., Raju I., Zaman U H M. (2021) A Study On Numerical Solution of Initial Value Problem by Using Euler’s Method, Runge-Kutta 2nd Order, Runge-Kutta 4th Order, And Runge-Kutta Fehlberg Method with MATHLAB. International Journal of Scientific & Engineering Research, Vol. 12, No. 3.
  • Butcher J C. (2016) Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, Second Edition. https://doi.org/10.1002/9781119121534.
  • Chapra S C. (2012) Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill, Third Edition, ISBN 978-0-07-340110-2.
  • Chen J., Xiao P., Zhang Y., Wu B. (2013) GPS/GLONASS system bias estimation and application in GPS/GLONASS combined positioning. China Satellite Navigation Conference (CSNC). Chapter in Lecture notes in electrical engineering, pp. 323-333.
  • Cook G E. (1962) Luni-Solar perturbations of the orbit of an Earth satellite. Geophysical Journal of the Royal Astronomical Society, Vol. 6, No.3, 271-291. https://doi.org/10.1111/j.1365-246x.1962.tb00351.x.
  • Dormand J R., Prince P J. (1980) A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics, Vol. 6, No. 1, 19-26. https://doi.org/10.1016/0771-050X(80)90013-3.
  • Góral W., Skorupa B. (2015) Calculation of position and velocity of GLONASS satellite based on analytical theory of motion. Artificial Satellites, Vol. 50, No. 3, 105-114. DOI: 10.1515/arsa2015-0008.
  • Grunter W. (2015) The Receiver Independent Exchange Format RINEX, Version 3.03. International GNSS Service (IGS), RINEX Working Group and Radio Technical Commission for Maritime Services. Special Committee 104 (RTCM-SC104).
  • Habrich H. (1999) Geodetic applications of the Global Navigation Satellite System (GLONASS) and of GLONASS/GPS combinations. Doctoral thesis, Faculty of Science, University of Bern. http://ftp.aiub.unibe.ch/papers/hhdiss.pdf.
  • ICD-GLONASS. (2016) GLONASS, General Description of Code, Interface Control Document, Edition 1.0, Moscow.
  • Levine J. (2002) Time and frequency distribution using satellites. Reports on Progress in Physics, Vol. 65, No. 8, 1119-1164. https://doi.org/10.1088/0034-4885/65/8/201.
  • Lin Y., Guo H., Yu M. (2009) A Comparison for GLONASS Satellite Coordinate Calculation, International Conference on Information Engineering and Computer Science. https://ieeexplore.ieee.org/document/5365110.
  • Maciuk K. (2016) Different approaches in GLONASS orbit computation from broadcast ephemeris. Geodetski vestnik, Vol. 60, No. 3, 455-466. DOI: 10.15292/geodetski-vestnik.2016.03.455-466.
  • Mathworks. (2024) Solve nonstiff differential equations-medium order method-MATLAB ode45. https://www.mathworks.com/help/matlab/ref/ode45.html.
  • Medjahed S A., Niati A., Kheloufi N., Taibi H. (2021) Implementation of the variation of the Luni-Solar acceleration into GLONASS orbit calculus. Geodetski Vestnik, Vol. 65, No. 03, 459-471. DOI: 10.15292/geodetski-vestnik.2021.03.459-471.
  • Montenbruck O., Steigenberger P., Aicher M. (2020) A long‐term broadcast ephemeris model for extended operation of GNSS satellites. Navigation Journal of the Institute of Navigation, Vol. 68, No. 01, 199-215. doi.org/10.1002/navi.404.
  • Montenbruck O., Gill E. (2012) Satellite Orbits: models, methods, and applications. Applied Mechanics Reviews, springer.
  • Noll C. E. (2010). The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Advances in Space Research, Vol. 45, N°.12, 1421-1440. doi.org/10.1016/j.asr.2010.01.018.
  • Oliveira L B., Zapella M., Hunt R. (2018) Global Positioning System and Global Navigation Satellite System constellations for better time synchronising reliability. The Journal of Engineering, Vol. 15, 935-937. https://doi.org/10.1049/joe.2018.0183.
  • Pace S., Frost G P., Lachow I., Frelinger D R., Fossum., D., Wassem D., Pinto M M. (1995) The Global Positioning System: Assessing National Policies. In Rand Corporation eBooks. https://doi.org/10.7249/mr614.
  • Petrovski I G. (2014) GPS, GLONASS, Galileo, and BeiDou for mobile devices: from instant to precise positioning. Cambridge University Press, 1st ed., Vol. 1.
  • Polischuk G M., Kozlov V I., Ilitchov V V., Kozlov A G., Bartenev V A., Kossenko V E., Anphimov N A., Revnivykh S G., Pisarev S B., Tyulyakov A E., Vorokhovsky Y L. (2002) The Global Navigation Satellite System GLONASS: Development and Usage in the 21st Century. 34th Annual Precise Time and Time Interval (PTTI) Meeting, 3-5 December 2002, Reston, VA.
  • Press W H., Teukolsky S A., Vetterling W T., Flannery B P.(2007) Numerical Recipes, the Art of Scientific Computing.3rd Edition, Cambridge University Press.
  • Sanz J., Zornoza J., Hernández-Pajares M. (2013) GNSS DATA PROCESSING-Volume I, Fundamentals and Algorithms, European Space Agency. ISBN 978-92-9221-886-7.
  • Sarkar S., Bose A. (2017) Lifetime Performances of Modernized GLONASS Satellites : A Review. Artificial Satellites, Vol. 52, No. 4, 85-97. https://doi.org/10.1515/arsa-2017-0008.
  • Shi C., Wei N. (2019) Satellite Navigation for Digital Earth. In Guo H., Goodchild M. F., Annoni A , Manual of Digital Earth. Springer Nature. International Society of Digital Earth. https://doi.org/10.1007/978-981-32-9915-3.
  • Solórzano, C R H., De Almeida Prado A F B. (2013) A comparison of averaged and full models to study the Third-Body perturbation. The Scientific World JOURNAL, Vol. 2013, No.1. https://doi.org/10.1155/2013/136528.
  • Waleed K A. (2013) Advantages and Disadvantages of Using MATLAB/ode45 for Solving Differential Equations in Engineering Applications. International Journal of Engineering (IJE), Vol. 7, No. 1, 25-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4668c670-4418-4034-8533-2dd99d224f73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.