PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The development of unconsolidated sedimentary coastal cliffs (Pobrzeże Kaszubskie, Northern Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the course of fieldwork based on geological and landslide mapping and spatial analyses of map information at least 2 types of landslides were identified. Type I: simple landslides developed in homogeneous and undisturbed rocks, for instance – loams, clays and sands. This type of landslide includes many examples developed mainly on the stretch (segment of the studied area) approximately between 132.25 and 133.50 km and 128.50 and 129.50 km of the Polish coastline. Type II: complex landslides in which the movement and displacement of rock masses occurs under complex geological and hydrogeological conditions. The complex factors are determined by phenomena such as glaciotectonics, discontinuities of rock layers and thrust zones; the slip surface occurs at considerable depths, and sometimes several slip surfaces can be distinguished. These landslide types are located in the vicinity of Jastrzębia Góra and Rozewie, near km 134 and 131.5. Prediction of the formation of this landslide types is difficult. Even if long-term observations are available, the mass movement, variable over time, is difficult to interpret. It is clear that the changes are continuous, but occur with varying intensity. Proper recognition of the types of mass movement is crucial to establishing the appropriate methods to prevent their development.
Słowa kluczowe
Rocznik
Strony
491--501
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
autor
  • Polish Geological Institute - National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
autor
  • Polish Geological Institute - National Research Institute, Marine Geology Branch, Kościerska 5, 80-328, Gdańsk, Poland
Bibliografia
  • 1. Carpenter, N.E., Dickson, M.E., Walkden, M.J.A., Nicholls, R.J., Powrie W., 2014. Effects of varied lithology on soft-cliff recession rates. Marine Geology, 354: 40-52.
  • 2. Cruden, D.M., Varnes, D.J., 1996. Landslide types and processes. Transportation Research Board Special Report, 247: 36-75.
  • 3. Della Seta, M., Martino, S., Scarascia Mugnoza, G., 2013. Quaternary sea-level change and slope instability in coastal areas: insights from the Vasto Landslide (Adriatic coast, central Italy). Geomorphology, 201: 462-478.
  • 4. Dickson, M.E., Walkden, M.J.A., Hall, J.W., 2007. Systemic impacts of climate change on an eroding coastal region over the twenty-first century. Climatic Change, 84: 141-166.
  • 5. Dikau, R., Schrott, L., 1999. The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology, 30: 1-12.
  • 6. Eberhards, G., Lapinskis, J., Saltupe, B., 2006. Hurricane Erwin 2005 coastal erosion in Latvia. Baltica, 19: 10-19.
  • 7. Eurosion, 2004. Living with Coastal Erosion in Europe: Sediment and Space for Sustainability: Major Findings and Policy Recommendations of the EUROSION Project. European Commission, Directorate General Environment.
  • 8. Fiorillo, F., 2003. Geological features and landslide mechanisms of an unstable coastal slope (Petacciato, Italy). Engineering Geology, 67: 255-267.
  • 9. Hackney, C., Darby, S.E., Leyland, J., 2013. Modelling the TO- sponse of soft cliffs to climate change: a statistical, process-response model using accumulated excess energy. Geomorphology, 187: 108-121.
  • 10. Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides, 11: 167-194.
  • 11. Ilcewicz-Stefaniuk, D., Czerwiński, T., Koryczan, A., Targosz, P., Stefaniuk, M., 2005. Landslides survey in the northeastern Poland. Polish Geological Institute Special Papers, 20: 67-73.
  • 12. Joyal, G., Lajeunesse, P., Morissette, A., Bernatchez, P., 2016. Influence of lithostratigraphy on the retreat of an unconsolidated sedimentary coastal cliff (St. Lawrence estuary, eastern Canada). Earth Surface Processes and Landforms, 41: 1055-1072.
  • 13. Kamiński, M., Krawczyk, M., Zientara, P., 2012. Recognition of geological structure of the Jastrzębia Góra cliff using resistivity tomography methods for landslide hazard (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 452: 119-130.
  • 14. Kenzler, M., Tsukamoto, S., Meng, S., Thiel, C., Frechen, M., Huneke, H., 2015. Luminescence dating of Weichselian interstadial sediments from the German Baltic Sea coast. Quaternary Geochronology, 30: 251-256.
  • 15. Kostrzewski, A., Zwoliński, Z., Winowski, M., Tylkowski, J., Samolyk, M., 2015. Cliff top recession rate and cliff hazards for the sea coast of Wolin Is I and (Southern Bal tic). Baltica, 28: 109-120.
  • 16. Kramarska, R., 1999. Trzeciorzęd strefy brzegowej Bałtyku na odcinku Władysławowo - Jastrzębia Góra. Posiedzenia Naukowe Państwowego Instytutu Geologicznego, 55: 165-166.
  • 17. Kramarska, R., Frydel, J., Jegliński, W., 2011. Terrestrial laser scanning application for costal geodynamice assesment: the case of Jastrzębia Góra Cliff (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 446: 101-108.
  • 18. Kuhn, D., Prufer, S., 2014. Coastal cliff mon I tori ng and analysis of mass wast ing processes with the application of terrestrial laser scanning: a case study of Rugen, Germany. Geomorphology 213: 153-165.
  • 19. Lari, S., Frattini, P., Crosta, G.B., 2014. A probabilistic approach for landslide hazard analysis. Engineering Geology, 182 (part A): 3-14.
  • 20. Lee, E.M., 2008. Coastal cliff behaviour: observations on the relationship between beach levels and recession rates. Geomorphology, 101: 558-571.
  • 21. Lidzbarski, M., Tarnawska, E., 2015. The role of the hydrogeological research on cliff coast in diagnosis and foracasting of the geological hazards (in Polish with English summary). Przegląd Geologiczny, 63: 901-907.
  • 22. Łabuz, T.A., Kowalewska-Kalkowska, H., 2011. Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic sea. Climate Research, 48: 93-101.
  • 23. Łęczyński, L., 2002. Morfolitodynamika podbrzeża brzegu klifowego w Jastrzębiej Górze (in Polish). In: Przewodnik LXXIII Zjazdu Polskiego Towarzystwa Geologicznego, Geologia Regionu Gdańskiego (eds. J. Zachowicz and R. Kramarska): 63-66. Polskie Towarzystwo Geologiczne, Państwowy Instytut Geologiczny, Gdańsk.
  • 24. Masłowska, M., Zaleszkiewicz, L., Olszak, I., Jurys, L., Michałowska, M., 2002. Budowa geologiczna klifu w Jastrzębiej Górze (in Polish). In: Przewodnik LXXIII Zjazdu Polskiego Towarzystwa Geologicznego, Geologia Regionu Gdańskiego (eds. J. Zachowicz and R. Kramarska): 59-62. Polskie Towarzystwo Geologiczne, Państwowy Instytut Geologiczny, Gdańsk.
  • 25. Mickovski, S.B., Santos, O., Ingunza, P.M.D., Bressani, L., 2015. Coastal slope instability in contrasting geoenvironmental conditions. In: Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development (eds. M.G. Winter, D.M. Smith, P.J.L. Eldred and D.G. Toll): 1801-1806. ICE Publishing.
  • 26. Montoya-Montes, I., Rodriguez-Santalla, I., Sanchez-Garcia, M.J., Alcantara-Carrio, J., Martinez-Velazquez, S., Gomes-Ortiz, D., Martin-Crespo, T., 2012. Mapping of landslide susceptibility of coastal cliffs: the Mont-Roig del Camp case study. Geologica Acta, 10: 439-455.
  • 27. Orviku, K., Tónisson, H., Kont, A., Suuroja, S. and Anderson, A., 2013. Retreat rate of cliffs and scarps with different geological properties in various locations along the Estonian coast. Journal of Coastal Research, Special Issue, 65: 552-557.
  • 28. Ostrowski, R., Pruszak Z., Babakov A., 2014. Condition of South-Eastern Baltic Sea shores and methods of protecting them. Archives of Hydro-Engineering and Environmental Mechanics, 61: 17-37.
  • 29. Pellicani, R., Van Westen, C.J., Spilotro, G., 2013. Assessing land slide exposure in areas with limited landslide information. Landslides, 11:463-480.
  • 30. Rotnicki, K., Borówka, R.K., Devine, N., 1995. Accelerated sea level rise as a threat to the Polish coastal zone quantification of risk. Journal of Coastal Research, 22: 111-134.
  • 31. Subotowicz, W., 1982. Litodynamika brzegów klifowych wybrzeża Polski. GTN - Ossolineum, Wrocław.
  • 32. Subotowicz, W., 1995a. Transformation of the cliff coast in Poland. Journal of Coastal Research, 22: 57-62.
  • 33. Subotowicz, W., 1995b. Transformation of the cliff coast in Poland. Prace Państwowego Instytutu Geologicznego, 149: 212-214.
  • 34. Topographische Karte, 1877. MaUstab 1:25,000, Sect.: 137-Ostrau. Staatsbibliothek zu Berlin.
  • 35. Topographische Karte, 1910. MaUstab 1:25,000, Sect.: 138-Rixhof. Staatsbibliothek zu Berlin.
  • 36. Uścinowicz, Sz., Zachowicz, J., Graniczny, M., Dobracki, R., 2004. Geol ogi cal structure of the southern Baltic coast and related hazards. Polish Geological Institute Special Papers, 15: 61-68.
  • 37. Uścinowicz, G., Kramarska, R., Kaulbarsz, D., Jurys, L., Frydel, J., Przezdziecki, P., Jegliński, W., 2014. Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region. Geologos, 20: 259-268.
  • 38. Wagner, M., 2007. The Miocene coal deposits from the Kępa Swarzewska at the Baltic Seaside (in Polish with English summary). Kwartalnik AGH Geologia, 33: 69-88.
  • 39. Varnes, D.J., 1978. Slope movement types and processes. Transportation Research Board, Special Report, 176: 11-33.
  • 40. Young, A.P., Flick, R.E., Gutierrez R., Guza R.T., 2009. Comparison of short-term seacliff retreat measurement methods in Del Mar, California. Geomorphology, 112: 318-323.
  • 41. Young, A.P., Flick, R.E., O'Reilly, W.C., Chadwick, D.B., Crampton, W.C., Helly, J.J., 2014. Estimating cliff retreat in southern California considering sea level rise using a sand balance approach. Marine Geology, 348: 15-26.
  • 42. Young, A.P., Guza, R.T., O'Reilly, W.C., Burvingt, O., Flick, R.E., 2016. Observations of coastal cliff base waves, sand levels, and cliff top shaking. Earth Surface Processes and Landforms, 41: 1564-1573.
  • 43. Zachowicz, J., Uścinowicz, Sz., Jegliński, W., Zaleszkiewicz, L., 2007. Mapa geodynamiczna polskiej strefy brzegowej Bałtyku południowego w skali 1:10 000, ark. Karwia, Jastrzębia Góra-Rozewie z objaśnieniami (in Polish). Państwowy Instytut Geologiczny, Warszawa- Gdańsk.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-466448bd-1c9b-4936-b7c7-fe4eb8e29498
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.