PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microalgae as efficient feedstock for biorefinery

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Jednokomórkowe glony jako surowiec dla biorafinerii
Języki publikacji
EN
Abstrakty
EN
The global energy demand keeps rising and easy accessible fossil fuel reserves are gradually decreasing which leads to increasing interest in renewable energy sources. The energy production can be based on various sources alternative to petroleum, but the material economy mainly depends on biomass, in particular plant biomass. The potential of renewable biomass resources conversion to chemicals is sufficient to replace fossil crude oil as a carbon resource. In recent years it has increasingly become clear that first generation biofuels have got comparably unfavorable energy balances and therefore most likely can never play a major role in global energy supply. Lignocellulosic biomass is much cheaper for biofuel production than first generation feedstock, but still there are no efficient treatment technologies for large-scale applications. The microalgae might be the future source of biofuels and chemicals production. Microalgal lipids and carbohydrates could be converted to biofuels and the rest of microalgal biomass contains many valuable components, all of which are worth developing into refined products for various applications.
PL
Światowy popyt na energię nieustannie wzrasta, a dostępne złoża paliw kopalnych stopniowo się wyczerpują, co przyczynia się do wzrostu zainteresowania odnawialnymi źródłami energii. Produkcja energii może być oparta na wielu alternatywnych paliwach, ale gospodarka materiałowa jest w głównej mierze oparta na biomasie, w szczególności pochodzenia roślinnego. Potencjał konwersji biomasy do użytecznych związków chemicznych jest wystarczający by zastąpić ropę naftową i węgiel. W ostatnich latach stało się jasne, że biopaliwa pierwszej generacji mają mało korzystny bilans energetyczny i prawdopodobni nigdy nie będą odgrywać znaczącej roli w globalnym rynku energetycznym. Lignocelulozowa biomasa jest znacznie tańszym surowcem do produkcji biopaliw, ale nadal nie opracowano wydajnych sposobów jej przetwarzania, które mogłyby znaleźć zastosowanie w produkcji przemysłowej na dużą skalę. Jednokomórkowe glony mogą stać się przyszłością zarówno biopaliw jak i produkcji szerokiej gamy związków chemicznych. Lipidy i węglowodany zawarte w ich komórkach stanowić mogą substrat do produkcji biopaliw, a pozostałą część biomasy zawierająca szereg cennych składników, można przetworzyć w rafinowane produkty o szerokim spektrum zastosowań.
Słowa kluczowe
Twórcy
  • University of Lodz, Department of Ecophysiology and Plant Development, 12/16 Banacha str., 90-131 Lodz, Poland
  • University of Lodz, Department of Ecophysiology and Plant Development, 12/16 Banacha str., 90-131 Lodz, Poland
  • University of Lodz, Department of Ecophysiology and Plant Development, 12/16 Banacha str., 90-131 Lodz, Poland
autor
  • Research Institute of Horticulture, 1/3 Konstytucji 3. Maja Str., 96-100 Skierniewice, Poland
Bibliografia
  • [1] J.H. Mussgnug, V. Klassen, A. Schlüter, O. Kruse Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology 150 (2010) 51-56.
  • [2] B. Kamm . M. Kamm Principles of biorefineries Appl Microbiol Biotechnol 64 (2004) 137-145.
  • [3] R. Kajaste Chemicals from biomass - managing greenhouse gas emissions in biorefinery production chains a review, Journal of Cleaner Production 75 (2014) 1-10.
  • [4] NREL, 2014. http://www.nrel.gov/biomass/ integrated _biorefinery.html.
  • [5] http://www.ethanolrfa.org/pages/ethanol-facts-environment.
  • [6] J. Goldemberg, Ethanol for a sustainable energy future, Science 315 (2007) 808-810.
  • [7] (13) R.L. Naylor, A.J. Liska, M.B. Burke, W.P. Falcon, J.C. Gaskell, S.D. Rozelle, K.G. Cassman, The ripple effect: biofuels, food security, and the environment, Environment 49 (2007) 30-43.
  • [8] C.Y. Chen, X.Q. Zhao, H.W. Yen, S.H. Ho, C.L. Cheng, D.J. Lee, F.W. Bai, J.S. Chang ‘Microalgae-based carbohydrates for biofuel production Biochemical Engineering Journal 78 (2013) 1- 10.
  • [9] K. Koponen, S. Soimakallio, E. Tsupari, R. Thun, R. Antikainen, GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria. Appl. Energy 102 (2013) 440-448.
  • [10] IEA, 2010. Sustainable Production of Second-Generation Biofuels (Report). http://www.iea.org/papers/2010/second generation biofuels.pdf.
  • [11] (16) M.E. Himmel, S.Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, T.D. Foust, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science 315 (2007) 804-807.
  • [12] Y. Gan, C. Liang, W. May, S.S. Malhi, J. Niu, X. Wang,. Carbon footprint of spring barley in relation to preceding oilseeds and N fertilization. Int. J. Life Cycle Assess. 17 (2012) 635-645.
  • [13] A. Ekman, P. Börjesson, Life cycle assessment of mineral oil-based and vegetable oil-based hydraulic fluids including comparison of biocatalytic and conventional production methods. Int. J. Life Cycle Assess. 16 (2011) 297-305.
  • [14] U. Jena, K.C. Das, J.R. Kastner, Effect of operating conditions thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol. 102:10 (2011) 6221-6229.
  • [15] http://www.fortum.com/en/energy-production/fuels/pages/default.aspx.
  • [16] http://www.st1.eu/.
  • [17] http://www.greenfuelnordic.fi/en/page/2.
  • [18] http://www.vapo.fi/en.
  • [19] http://www.upm.com/en/Pages/default.aspx.
  • [20] A. Mascarelli,. Gold rush for algae, Nature 461(2009) 460-461.
  • [21] http://www.algenol.com/.
  • [22] http://cellana.com/.
  • [23] http://solazyme.com/solutions/fuel/?lang=en.
  • [24] E. Waltz, Biotech’s green gold? Nat. Biotechnol. ,27: 1 (2009) 15-18.
  • [25] J.R. Benemann, J. Olivares, S. Mayfield, J. Kneiss, G. Dirks, M. Sabarsky, An update on the global consortia, 5th Algae Biomass Summit: Algae Biomass Summit Plenary Panel. Minneapolis, USA.(2011.10.26.).
  • [26] E. Stephens, L. Wagner, I.L. Rossand, B. Hankamer, Microalgal production systems: Global impact of industry scale-up. [In] C. Postenand, C. Walter, (Eds.) Microalgal Biotechnology: Integration and Economy De Gruyter, Berlin, 2012.
  • [27] T.M. Lammens, M.C.R. Franssen, E.L. Scott, J.P.M. Sanders, Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy 44(2012) 168-181.
  • [28] A. Nzihou, G. Flamant, B. Stanmore,. Synthetic fuels from biomass using concentrated solar energy e a review. Energy 42 (2012) 121-131.
  • [29] K. Meli, M. Hurme, Evaluation of lignocellulosic biomass upgrading routes to fuels and chemicals. Cellul. Chem. Technol. 44:4-6 (2010) 117-137.
  • [30] K. Yao, C. Tang, Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:5 (2013) 1689-1712.
  • [31] C. Wang, A. Thygesen, Y. Liu, Q. Li, M. Yang, D. Dang, Z. Wang, Y. Wan., W. Lin, J. Xing,. Bio-oil based biorefinery strategy for the production of succinic acid. Biotechnol. Biofuels 6:74 (2013) 1-10.
  • [32] E. Stephens, I.L. Ross, Z. King, J.H. Mussgnug, O. Kruse, C. Posten, M.A. Borowitzka, B. Hankamer,. An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol. 28 (2010) 126-128.
  • [33] Y.L. Cheng, Y.C. Juang, P.W. Tsai, S.H. Ho, C.Y. Chen, J.S. Chang, W.M. Chen, J.M. Liu, D.J. Lee,. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour. Technol. 102 (2011) 82-87.
  • [34] E. Kwietniewska, J. Tys, I. Krzemińska, W. Kosieł, 2012 Microalgae - cultivation and application of biomass as a source of energy: a review. Acta Agrophysica monographiae 2 (2012) 1-108.
  • [35] T.M. Mata, A.A. Martins, N.S. Caetano,. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14 (2010) 217-232.
  • [36] P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer,.Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research 1 (2008) 20-43.
  • [37] K.S. Gao, Y.P. Wu, G. Li, H.Y. Wu, V.E. Villafane, E.W. Helbling,. Solar UV radiation drives CO2 fixation in marine phytoplankton: A doubleedgedsword. Plant Physiol., 144:1 (2007), 54-59.
  • [38] Chisti Y., 2007. Biodiesel from microalgae. Biotechnol. Adv., 25, 294-306.
  • [39] X.G. Zhu, S.P. Long, D.R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol.,19:2 (2008) 153-159.
  • [40] E. Stephens, I.L. Ross, Z. King, J. Mussgnug, O. Kruse, C. Posten, M.A. Borowitzka, B. Hankamer, An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol.,28:2 (2010) 126-128.
  • [41] P.J.le.B. Williams, L.M.L. Laurens, Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics, Energy Environ.Sci.,3:5 (2010) 554-590.
  • [42] A. Melis, Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant. Sci., 177:4 (2009) 272-280.
  • [43] K.M. Weyer, D.R. Bush, A. Darzins, B.D. Wilson, Theoretical maximum algal oil production, Bioenergy.Res., 3:2 (2010) 204-213.
  • [44] A. Franz, F. Lehr, C. Posten, G. Schaub, Modeling microalgae cultivation productivities in different geographic locations - estimation method for idealized photobioreactors, Biotechnology Journal 7:4 (2012) 546-557.
  • [45] C. Wilhelm, T. Jakob From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl. Microbiol. Biotechnol., 92:5 (2011) 909-919.
  • [46] L. Barsanti, P. Gualtieri,. Algae: anatomy, biochemistry, and biotechnology, CRC Press, USA 2006.
  • [47] J. Masojidek, M. Koblizek, G. Torzillo,. Photosynthesis in microalgae. In: Handbook of microalgal culture: Biotechnology and Applied Phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK. 2004 20 - 39.
  • [48] Y.K. Lee,. Heterotrophic carbon nutrition. In: Handbook of microalgal culture: biotechnology and applied phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK, 2004 116-124.
  • [49] J. Doucha, F. Straka, K. Lívanský, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J Appl Phycol., 17 (2005) 403-412.
  • [50] M. Matsumoto, Y. Hiroko, S. Nobukazu, O. Hiroshi, M. Tadashi, Saccharification of marine microalgae using marine bacteria for ethanol production. Appl. Bioch. Biotech.,105 (2003) 247-254.
  • [51] M.G. de Morais, J.A.V. Costa, Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol., 129 (2007) 439-445.
  • [52] A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove,. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends in Biotechnology, 28:7(2010) 371-380.
  • [53] S.H. Ho, C.Y. Chen, , D.J. Lee,., J.S. Chang, Perspectives on microalgal CO2- emission mitigation systems - a review. Biotechnol. Adv. 29 (2011) 189-198.
  • [54] C.S. Reynolds,. The ecology of phytoplankton. Cambridge University Press, UK, 2006.
  • [55] Y. Chisti,. Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants?, Trends Biotechnol., 26:7 (2008) 351-352.
  • [56] M. Aresta, A. Dibenedetto, G. Barberio, Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process. Technol., 86:14-15( 2005) 1679-1693.
  • [57] E.J. Olguín, S. Galicia, G. Mercado, T. Pérez,. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions, Journal of Applied Phycology, 15:2 (2003), 249-257.
  • [58] T. Minowa, S. Sawayama,. A novel microalgal system for energy production with nitrogen cycling. Fuel, 78 (1999)1213-1215.
  • [59] M. Janvanmardian, B.O. Palsson, High density photoautotrophic algal cultures: design, construction and operation of a novel photobioreactor system. Biotechnol. Bioeng., 38 (1991) 1182-1189.
  • [60] P. Haro, F. Trippe, R. Stahl, E. Henrich, Bio-syngas to gasoline and olefins via DME-A comprehensive techno-economic assessment. Appl. Energy 108 (2013) 54-65.
  • [61] L. Iglesias, A. Laca, M. Herrero, M. Díaz,. A life cycle assessment comparison between centralized and decentralized biodiesel production from raw sunflower oil and waste cooking oils. J. Clean. Prod. 3 (2012) 162-171.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-466413df-ea60-4922-b1d6-93652e4bc8b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.