PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rusztowania (scaffolds) stosowane w medycynie regenaracyjnej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Scaffolds for regenerative medicine
Języki publikacji
PL
Abstrakty
EN
The presence of three dimensional support is indispensable condition for successful regeneration of the tissue. In the absence of natural scaffold, or absence of its artificial substitute, regeneration is not possible. The advantage of natural building blocks to create new scaffolds results from the requirements of the materials structures used for tissue regeneration: biocompatibility, biodegradability, lack of cytotoxicity and desirable mechanical properties. Application of these building blocks for the preparation of three dimensional materials should ensure completely biocompatibility of the temporary extracellular matrix equivalent, thus offering construct resembling a natural milieu for the cells and finally regeneration of tissues. These include framework with elements stimulating adhesion of in vitro grown cells, growth factors, hormones and vitamins offered as a completed ingredients in the commercially available culture media. 3D frameworks applied for cell growing should facilitate formation of required tissue shape and size as well as appropriate functioning of the cells. The key factor for the successful regeneration of tissues is the function of the scaffold determining the environment for growing cells, directing proliferation and regulating differentiation processes. The basic feature of the cellular scaffold, determining its functioning is porosity. Pore diameter and their abundance consists a critical factor for penetration of cells into the interior of the implant and finally for successful regeneration of damaged tissue. The progress of tissue regeneration in vitro depends on the presence of cytokines and growth factors, which are controlling cell differentiation process. Nowadays neither of implant material offered on the market has a property comparable to the natural tissue. However, there are many reports presenting preliminary experiments conducted towards attaining novel supports for regenerative medicine derived from peptides and formed by their self-organization. The most advanced of them are known under trade name PuraMatrix, which recently were applied for the regeneration of soft tissues. However, due to tendency of this materials for hydrogels formation, characteristic for them are disadvantageous mechanical properties. The alternative approach based on application of native ECM proteins was also taken into consideration. The weak points of this materials are the susceptibility of proteins towards proteolytic enzymes and theirs immunogenic properties. The diversity of peptide modules give the opportunity to design and synthesize a variety of biomaterials that mimic the structural complexity of the natural ECM.
Rocznik
Strony
263--286
Opis fizyczny
Bibliogr. 105 poz., rys., tab.
Twórcy
autor
  • Instytut Chemii Organicznej Politechniki Łódzkiej, ul. Żeromskiego 116, 90-924 Łódź
autor
  • Instytut Chemii Organicznej Politechniki Łódzkiej, ul. Żeromskiego 116, 90-924 Łódź
  • Instytut Chemii Organicznej Politechniki Łódzkiej, ul. Żeromskiego 116, 90-924 Łódź
  • Instytut Chemii Organicznej Politechniki Łódzkiej, ul. Żeromskiego 116, 90-924 Łódź
Bibliografia
  • [1] H. Wobma, G. Vunjak-Novakovic, Tissue Eng. Part B Rev., 2016, 22, 101.
  • [2] V. Marx, Nature, 2015, 522, 373.
  • [3] A. Atala, F.K. Kasper, A.G. Mikos, Sci. Transl. Med., 2012, 4, 160.
  • [4] M.J. Webber, J.A. Kessler, S.I. Stupp, J. Intern. Med., 2009, 267, 71.
  • [5] P.X. Ma, Adv. Drug Deliv. Rev., 2008, 60, 184.
  • [6] N. Manasa, K. Priyadharshini, M.K. Uma, S. Swaminathan, Curr. Prot. Pepti. Sci., 2013, 14, 70.
  • [7] S. Sethuraman, L.S. Nair, S. El-Amin, M. Nguyen, A. Singh, N. Krogman, Y. E. Greish, H. R. Allcock, P. W. Brown, C. T. Laurencin, Acta. Biomater., 2010, 6, 1931.
  • [8] S. Sethuraman, L.S. Nair, S. El-Amin, M. Nguyen, A. Singh, N. Krogman, Y.E. Greish, H.R. Allcock, P.W. Brown, C.T. Laurencin, J. Biomater. Sci. Polym. Ed., 2011, 22, 733.
  • [9] I. Vroman, L. Tighzert, Materials, 2009, 2, 307.
  • [10] F. Gelain, Int. J. Nanomed., 2008, 3, 415.
  • [11] S. Kyle, A. Aggeli, E. Ingham, M.J. McPherson, Trends Biotechnol., 2009, 27, 422.
  • [12] L. Cen, W. Liu, L. Cui, W. Zhang, Y. Cao, Pediatr. Res., 2008 63, 492.
  • [13] N. Angelova, D. Hunkeler, Trends Biotechnol., 1999, 17, 409.
  • [14] J. Hu, X. Sun, H. Ma, C. Xie, Y. E. Chen, P.X. Maa, Biomaterials, 2010, 31, 7971.
  • [15] L. Zhao, M.S. Detamore, J. Biomed. Sci. Eng., 2010, 3, 1041.
  • [16] K. Ragaert, F. De Somer, I. De Baere, L. Cardon, J. De Grieck, Adv. Product. Eng. Manag., 2011, 6, 163.
  • [17] Z. Pan, J. Ding, Interface Focus, 2012, 2, 366.
  • [18] E. Chung, S.H. Kim, Y.G. Ko, J.H. Kwon, J.-W. Han, I.S. Park, S.S. Han, S.H. Kim, Key Eng. Mat., 2007, 342-343, 321.
  • [19] L.S. Nair, C.T. Laurencin, Adv. Biochem. Engin/Biotechnol., 2006, 102, 47.
  • [20] S.Y. Chew, R. Mi, A. Hoke, K.W. Leong, Biomaterials, 2008, 29, 653.
  • [21] J.S. Choi, K.W. Leong, H.S. Yoo, Biomaterials, 2008, 29, 587.
  • [22] L.N. Novikova, J. Pettersson, M. Brohlin, M. Wiberg, L.N. Novikov, Biomaterials, 2008, 29, 1198.
  • [23] S.J. Lee, S.H. Oh, J. Liu, S. Soker, A. Atala, J.J. Yoo, Biomaterials, 2008, 29, 1422.
  • [24] F. Gelain, S. Panseri, S. Antonini, C. Cunha, M. Donega, J. Lowery, F. Taraballi, G. Cerri, M. Montagna, F. Baldissera, A. Vescovi, ACS Nano., 2011, 5, 227.
  • [25] E. Dawson, G. Mapili, K. Erickson, S. Taqvi, K. Roy, Adv. Drug Deliv. Rev., 2008, 60, 215.
  • [26] J.S. Choi, S.J. Lee, G.J. Christ, A. Atala, J.J. Yoo, Biomaterials, 2008, 29, 1.
  • [27] E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Biomaterials, 2007, 28, 3012.
  • [28] M. Kallrot, U. Edlund, A.C. Albertsson. Biomaterials, 2006, 27, 1788.
  • [29] B.S. Miguel, M. Ehrbar , C. Ghayor, M. Textor, F. Weber, Eur. Cells Mat., 2006, 11, 5.
  • [30] A.S. Rowlands, S.A. Lim, D. Martin, J. J. Cooper-White, Biomaterials, 2007, 28, 2109.
  • [31] T.W. Chung, S.S. Wang, W.J. Tsai, Biomaterials, 2008, 29, 228.
  • [32] H. Shen, X. Hu, F. Yang, J. Bei, S. Wang, Biomaterials, 2007, 28, 4219.
  • [33] A.M.A. Ambrosio, H.R. Allcock, D.S. Katti, C.T. Laurencin, Biomaterials, 2002, 23, 1667.
  • [34] P.A. Gunatillake, R. Adhikari, Eur. Cells Mat., 2003, 5, 1.
  • [35] L. Almany, D. Seliktar, Biomaterials, 2005, 26, 2467.
  • [36] E. Alsberg, K.W. Anderson, A. Albeiruti, R.T. Franceschi, D.J. Mooney, J. Dent. Res., 2001, 80, 202.
  • [37] E.A. Silva, D.J. Mooney, Curr. Topics Development. Biol., 2004, 64, 181.
  • [38] D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin, J. Biomed. Mater. Res. Part B: Appl. Biomater., 2004, 70B, 286.
  • [39] A. Subramanian, U.M. Krishnan, S. Sethuraman, Biomed. Mater., 2011, 6, 025004.
  • [40] P. Kuppan, K.S. Vasanthan, D. Sundaramurthi, U.M. Krishnan, S. Sethuraman, Biomacromolecules, 2011, 12, 3156.
  • [41] L.S. Nair, S. Bhattacharyya, C.T. Laurencin, Expert Opin. Biol. Ther., 2004, 4, 659.
  • [42] R. Vasita, D.S. Katti, Int. J. Nanomed., 2006, 1, 15.
  • [43] H-Q. Mao, S.H. Lim, S. Zhang, G. Christopherson, K. Kam, S. Fischer, Tissue Eng. Biomater., 2010, 2, 89.
  • [44] S. Zhang, Nat. Biotechnol., 2003, 21, 1171.
  • [45] D.A. Harrington, A.K. Sharma, B.A. Erickson, E.Y. Cheng, World J. Urol., 2008, 26, 315.
  • [46] B. Dhandayuthapani, U.M. Krishnan, S. Sethuraman, J. Biomed. Mater. Res. Part B: Appl. Biomater., 2010, 94B, 264.
  • [47] C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Adv. Drug Deliv. Rev., 2007, 59, 1413.
  • [48] V. Milleret, B. Simona, P. Neuenschwander, H. Hall, Eur.Cell Mater., 2011, 21, 286.
  • [49] F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y-X. Mac, S. Wang, Biomaterials, 2004, 25, 1891.
  • [50] S. Zhang, Materials Today, 2003, 6, 20.
  • [51] C. Aleman, A. Bianco, M. Venanzi, Peptide Materials. From nanostructures to applications, John Wiley & Sons Ltd., 2013.
  • [52] M. Caruso, E. Placidi, E. Gatto, C. Mazzuca, L. Stella, G. Bocchinfuso, A. Palleschi, F. Formaggio, C. Toniolo, M. Venanzi, J. Phys. Chem. B, 2013, 117, 5448.
  • [53] M. Caruso, E. Gatto, E. Placidi, G. Ballano, F. Formaggio, C. Toniolo, D. Zanuy, C. Aleman, M. Venanzi, Soft Matter., 2014, 10, 2508.
  • [54] E. Longo, K. Wright, M. Caruso, E. Gatto, A. Palleschi, M. Scarselli, M. De Crescenzi, M. Crisma, F. Formaggio, C. Toniolo, M. Venanzi, Nanoscale, 2015, 7, 15495.
  • [55] L. Sun, C. Zheng, T.J. Webster, Int. J. Nanomedicine, 2017, 12, 73.
  • [56] D.B. Rasale, A.K. Das, Int. J. Mol. Sci., 2015, 16, 10797.
  • [57] M.W. Tibbitt, C.B. Rodell, J.A. Burdick, K.S. Anseth, PNAS, 2015, 112, 14444.
  • [58] E. De Santis, M.G. Ryadnov, Amino Acids, Pep. Prot., 2015, 40, 199.
  • [59] P. Kumaraswamy, R. Lakshmanan, S. Sethuraman, U. M. Krishnan, Soft Matter., 2011, 7, 2744.
  • [60] K. Rajagopal, J. P. Schneider, Curr. Opin. Struct. Biol., 2004, 14, 480.
  • [61] J.D. Hartgerink, T.D. Clark, M.R. Ghadiri, Chem. Eur. J., 1998, 4, 1367.
  • [62] A. Bolhassani, Biochim. Biophys. Acta., 2011, 1816, 232.
  • [63] S. Zhang, L. Yan, M. Altman, M. Lassle, H. Nugent, F. Frankel, D.A. Lauffenburger, G.M. Whitesides, A. Rich, Biomaterials, 1999, 20, 1213.
  • [64] J. Hyun, W.K. Lee, N. Nath, A. Chilkoti, S. Zauscher, J. Am. Chem. Soc., 2004, 126, 7330.
  • [65] S. Zhang, C. Lockshin, A. Herbert, E. Winter, A. Rich, EMBO J., 1992, 11, 3787.
  • [66] P.X. Ma, J.H. Elisseeff, Scaffolding in tissue engineering, CRC press: Boca Raton, 2005.
  • [67] R.G. Ellis-Behnke, Y.-X. Liang, S.-W. You, D.K.C. Tay, S. Zhang, K.-F. So, Proc. Natl. Acad. Sci. USA., 2006, 103, 5054.
  • [68] A. Horii, X. Wang, F. Gelain, S. Zhang, Plos One, 2007, 2, e190.
  • [69] R.N. Shaha, N.A. Shah, M.M. Del Rosario Lim, C. Hsieha, G. Nuber, S.I. Stupp, Proc. Natl. Acad. Sci. USA., 2010, 107, 3293.
  • [70] S. Gilead, E. Gazit, Supramol. Chem., 2005, 17, 87.
  • [71] T.P.J. Knowles, M.J. Buehler, Nat. Nanotechnol., 2011, 6, 469.
  • [72] E. Gazit, FASEB J., 2002, 16, 77.
  • [73] W. Wang, Z. Yang, S. Patanavanich, B. Xub, Y. Chau, Soft Matter., 2008, 4, 1617.
  • [74] B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Adv. Mater., 2009, 21, 3307.
  • [75] A. Liedmann, S. Frech, P.J. Morgan, A. Arndt Rolfs, M.J. Frech, Biores. Open Access, 2012, 1, 16.
  • [76] D.A. Narmoneva, R. Vukmirovic, M.E. Davis, R.D. Kamm, R.T. Lee, Circulation, 2004, 110, 962.
  • [77] D.A. Narmoneva, O. Oni, A.L. Sieminski, S. Zhang, J.P. Gertler, R.D. Kamm, R.T. Lee, Biomaterials, 2005, 26, 4837.
  • [78] S. Zhang, Biotech. Adv., 2002, 20, 321.
  • [79] A. Aggeli, M. Bell, L.M. Carrick, C.W.G. Fishwick, R. Harding, P.J. Mawer, S.E. Radford, A.E. Strong, N. Boden, J. Am. Chem. Soc., 2003, 125, 9619.
  • [80] T.C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich, S. Zhang, Proc. Natl. Acad. Sci. USA., 2000, 97, 6728.
  • [81] J. Guo, K.K.G. Leung, S. Huanxing, Q. Yuan, L. Wang, T.H. Chu, W. Zhang, J.K.S. Pu, G.K.P. Ng, W.M. Wong, X. Dai, W. Wu, Nanomed: Nanotech. Biol. Med., 2009, 5, 345.
  • [82] S. Wang, D. Nagrath, P.C. Chen, F. Berthiaume, M.L. Yarmush, Tissue Eng. Part A, 2008, 14, 227.
  • [83] Y., Yuan, C. Cong, J. Zhang, L. Wei, S. Li, Y. Chen, W. Tan, J. Cheng, Y. Li, X. Zhao, Y. Lu, Transplant Proc., 2008, 40, 2571.
  • [84] R.E. Miller, P.W. Kopesky, A.J. Grodzinsky, Clin. Orthop. Relat. Res., 2010, 469, 2716.
  • [85] Z. Luo, S. Wang, S. Zhang, Biomaterials, 2011, 32, e2013.
  • [86] G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp, Science, 2004, 303, 1352.
  • [87] Y. Kumada, S. Zhang, Plos One, 2010, 5, e10305.
  • [88] X. Wang, A. Horii, S. Zhang, Soft Matter., 2008, 4, 2388.
  • [89] J.M. Anderson, M. Kushwaha, A. Tambralli, S.L. Bellis, R.P. Camata, H.-W. Jun, Biomacromolecules, 2009, 10, 2935.
  • [90] M. Goldberg, R. Langer, X. Jia, Biomater. Sci. Polym. Ed., 2007, 18, 241.
  • [91] I.R. Degano, L. Quitana, M. Vilalta, D. Horna, N. Rubio, S. Borros, C. Semino, J.M. Blanco, D. Horna, N. Rubio, S. Borros, C. Semino, J. Blanco, Biomaterials, 2009, 30, 1156.
  • [92] A. Tambralli, B. Blakeney, J. Anderson, M. Kushwaha, A. Andukuri, D. Dean, H.-W. Jun, Biofabrication, 2009, 1, 025001.
  • [93] F. Taraballi, A. Natalello, M. Campione, O. Villa, S. M. Doglia, A. Paleari, F. Gelain, Front. Neuroengineering, 2010, 3, 1.
  • [94] T. D. Sargeant, M.O. Guler, S.M. Oppenheimer, A. Mata, R.L. Satcher, D.C. Dunand, S.I. Stupp, Biomaterials, 2008, 29, 161.
  • [95] L.C. Wu, J. Yang, J. Kopecek, Biomaterials, 2011, 32, e5341.
  • [96] T. Matsumoto, M. Tadokoro, K. Hattori, H. Ougushi, J. Satou, Bioceram. Dev. Appl., 2011, 1, 1.
  • [97] A. Andukuri, M. Kushwaha, A. Tambralli, J.M. Anderson, D.R. Dean, J.L. Berry, Y.D. Sohn, Y. Yoon, B.C. Brott, H. Jun, Acta. Biomaterialia, 2011, 7, 225.
  • [98] W. Zheng, Z. Wang, L. Song, Q. Zhao, J. Zhang, D. Li, S. Wang, J. Han, X. Zheng, Z. Yang, D. Kong, Biomaterials, 2012, 33, 2880.
  • [99] C. Cunha, S. Panseri, F. Gelain, Methods Mol. Biol., 2013,1058, 171.
  • [100] D.A. Grande, Nat. Rev. Rheumatol., 2017, 13, 67.
  • [101] Z.M. Jessop, A. Al-Sabah, W.R. Francis, I.S. Whitaker, BMC Med., 2016, 14, 115.
  • [102] L. Zhi, X. Mao-Bin, L. Yi, M. Yan, L. Jia-Shen, D. Fang-Yin, J. Biomater. Tissue Eng., 2016, 6, 755.
  • [103] H. Wobma, G. Vunjak-Novakovic, Tissue Eng. Part B Rev., 2016, 22, 101.
  • [104] A.S. Mao, D.J. Mooney, Proc. Natl. Acad. Sci. USA, 2015, 112, 14452.
  • [105] R.K. Upadhyay, J. Tissue Eng. Regen. Med., 2015, 4, 1.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-465e330b-eb9f-480b-8221-8882bec9345d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.