PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sheltering effect induced by established station to the new station excavation in Zhengzhou

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the interaction between the excavating pit and the adjacent established station, which was defined as sheltering effect and the inverse sheltering effect. A comprehensive conceptual framework and mathematical-physical expression were developed to define these effects, with the sheltering effect coefficient serving as an evaluation metric. The 0–1 boundary was defined to delineate the influence range of sheltering effect, and the sheltering circle family is thus established to describe the distribution of sheltering effect in the spatial range. Field monitoring data and numerical analysis was employed to investigate the multivariate nature of the sheltering effect. The results indicated a larger influence range for horizontal displacement while a greater influence degree for vertical displacement. The sheltering effect decreased with the increasing of spacing, while it increased with the excavation depth, having a jump mutation at a certain depth. In the Zhengzhou case study, the 0–1 boundaries for horizontal displacement are 30.24 m (1.2He) and 5.04 m (0.2He), for vertical displacement are 9.4 m (0.37He) and 18.9 m (0.75He), and for the rigid rotation of the station floor are 13.86 m (0.55He) and 5.04 m (0.2He). The critical points for jump mutations in horizontal displacement occur between 20 m and 22.1 m, for vertical displacement between 15.2 m and 22.1 m, and for the rigid rotation of the station floor between 16.4 m and 22.1 m. Constructing sheltering maps can effectively guide the project to leverage the sheltering effect and mitigate the inverse sheltering effect.
Rocznik
Strony
art. no. e175, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • China Railway 12th Bureau Group Co., Ltd, Taiyuan 030024, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • 1. Zhao J, Peng F, Wang T, Zhang X, Jiang B. Advances in master planning of urban underground space (UUS) in China. Tunn Undergr Space Technol. 2016;55:290–307. https:// doi. org/ 10. 1016/j.tust.2015.11.011.
  • 2. Liu B, Xu W, Zhang D, Zhang Q. Deformation behaviors and control indexes of metro-station deep excavations based on case histories. Tunn Undergr Space Technol. 2022;122:104400. https:// doi.org/10.1016/j.tust.2022.104400.
  • 3. Fan S, Song Z, Xu T, Wang K, Zhang Y. Tunnel deformation and stress response under the bilateral foundation pit construction: a case study. Arch Civ Mech Eng. 2021;21(3):109. https://doi.org/ 10.1007/s43452-021-00259-7.
  • 4. Miliziano S, Lillis AD. Predicted and observed settlements induced by the mechanized tunnel excavation of metro line C near S. Giovanni station in Rome. Tunn Undergr Space Technol. 2019;86:236–46. https://doi.org/10.1016/j.tust.2019.01.022.
  • 5. Sharma JS, Hefny AM, Zhao J, Chan CW. Effect of large excavation on deformation of adjacent MRT tunnels. Tunn Undergr Space Technol. 2001;16(2):93–8. https://doi.org/10.1016/S0886- 7798(01)00033-5.
  • 6. Zhang Z, Li Y, Wang S, Zhang H, Qian Y. Assessing and controlling of boulder deep-hole blasting-induced vibrations to minimize impacts to a neighboring metro shaft. Archiv Civ Mech Eng. 2021;21:66. https://doi.org/10.1007/s43452-021-00220-8.
  • 7. Feng G, Xu C, Liang L, Ling L, Tey M, Chi M, Ge S. Simplified method for evaluating the response of existing tunnel induced by adjacent excavation. Int J Numer Anal Methods Geomech. 2022;47(1):54–81. https://doi.org/10.1002/nag.3460.
  • 8. Liang R, Wu W, Feng Y, Jiang G, Liu J. Simplified method for evaluating shield tunnel deformation due to adjacent excavation. Tunn Undergr Space Technol. 2018;71:94–105. https://doi.org/ 10.1016/j.tust.2017.08.010.
  • 9. Han Y, Wang Y, Liu C, Hu X, Du L. Application of regularized ELM optimized by sine algorithm in prediction of ground settlement around foundation pit. Environ Earth Sci. 2022;81(16):1– 15. https://doi.org/10.1007/s12665-022-10542-2.
  • 10. Zhang J, Xie R, Zhang H. Mechanical response analysis of the buried pipeline due to adjacent foundation pit excavation. Tunn Undergr Space Technol. 2018;78:135–45. https:// doi. org/ 10. 1007/s12665-023-10827-0.
  • 11. Mitew-Czajewska M. A study of displacements of structures in the vicinity of deep excavation. Archiv Civ Mech Eng. 2019;19:547–56. https://doi.org/10.1016/j.acme.2018.11.010.
  • 12. Ozakgul K, Caglayan O, Tezer O, Uzgider E. Remediation of settlements in a steel structure due to adjacent excavations. Eng Fail Anal. 2012;20:156–65. https://doi.org/10.1016/j.engfaila- nal.2011.11.008.
  • 13. Yang T, Xiong S, Liu S, Liu Y, Zhao H, Li Y. Numerical analysis of the influence of deep foundation pit construction on adja- cent subway stations in soft soil areas. Adv Civil Eng. 2022. https://doi.org/10.1155/2022/6071868.
  • 14. Chen R, Meng F, Li Z, Ye Y, Ye J. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils. Tunn Undergr Space Technol. 2016;58:224–35. https://doi.org/10.1016/j.tust.2016.06.002.
  • 15. Tin N, Kazem G, Thanh T. Simultaneous pattern and size optimization of rock bolts for underground excavations. Comput Geotech. 2015;66:264–77. https://doi.org/10.1016/j.compgeo. 2015.02.007.
  • 16. Castaldo P, de Lulis M. Effects of deep excavation on seismic vulnerability of existing reinforced concrete framed structures. Soil Dyn Earthq Eng. 2014;64:102–12. https:// doi. org/ 10. 1016/j.soildyn.2014.05.005.
  • 17. Kivi AV, Sadaghiani MH, Ahmadi MM. Numerical modeling of ground settlement control of large span underground metro station in Tehran Metro using Central Beam Column (CBC) structure. Tunn Undergr Space Technol. 2012;28:1–9. https:// doi.org/10.1016/j.tust.2011.06.007.
  • 18. Sadaghiani MH, Dadizadeh S, Ahmadi MM. Study on the effect of a new construction method for a large span metro underground station in Tabriz-Iran. Tunn Undergr Space Technol. 2010;25(1):63–9. https://doi.org/10.1016/j.tust.2009.08.004.
  • 19. Tan Y, Li X, Kang Z, Liu J, Zhu Y. Zoned excavation of an oversized pit close to an existing metro line in stiff clay: case study. J Perform Constr Fac. 2015;29(6):04014158. https://doi. org/10.1061/(ASCE)CF.1943-5509.0000652.
  • 20. Li M, Xiao X, Wang J, Chen J. Numerical study on responses of an existing metro line to staged deep excavations. Tunn Undergr Space Technol. 2019;85:268–81. https://doi.org/10.1016/j.tust. 2018.12.005.
  • 21. Li Z, Zeng Y, Liu G. Numerical simulation of displacement transfer law of excavation adjacent metro station. Rock Soil Mech. 2008;29(11):3104–8. https:// doi. org/ 10. 16285/j. rsm. 2008.11.007.
  • 22. Zhu Y, Zhou X, Wei S, Tan Y. Investigation on deformation behaviors of foundation pit adjacent to existing metro stations. Rock Soil Mech. 2013;34(10):2997–3002. https:// doi. org/ 10. 16285/j.rsm.2013.10.023.
  • 23. Liao S, Wei S, Shen S. Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China. J Per- form Constr Facil. 2016;30(4):04015089. https://doi.org/10.1061/ (ASCE)CF.1943-5509.0000845.
  • 24. Chen S, Zhang F, Dai N. 3D numerical analysis of deep excava- tion considering the effect of adjacent substructures. J Shanghai Jiaotong Univ. 2016;50(011):1801–4. https://doi.org/10.16183/j. cnki.jsjtu.2016.11.024.
  • 25. Liu Y. Research on the deep excavation effect of the interchanging metro station. Shanghai: Shanghai, Tongji University; 2007.
  • 26. Cheng W, Song Z, Tian W, Wang Z. Shield tunnel uplift and deformation characterisation: a case study from Zhengzhou metro. Tunn Undergr Space Technol. 2018;79:83–95. https://doi.org/10. 1016/j.tust.2018.05.002.
  • 27. Liu Y, Nie S, Liu T. Sheltering effect of existing subsurface on displacement of retaining wall of foundation pits. Rock Soil Mech. 2014;36(S2):400–3. https://doi.org/10.11779/CJGE2014S2070.
  • 28. Liu Y, Liu JY, Cai SB. Study on sheltering effect of underground building to horizontal displacement of retaining wall of foundation pit. Appl Mech Mater. 2014;580–583:494–8. https://doi.org/ 10.4028/www.scientific.net/AMM.580-583.494.
  • 29. Zhao JP, Tan ZS, Yu RS, Li ZL, Zhang XR, Zhu PC. Deformation responses of the foundation pit construction of the urban metro station: a case study in Xiamen. Tunn Undergr Space Technol. 2022;128:104662. https://doi.org/10.1016/j.tust.2022.104662.
  • 30. Liu HF, Li KZ, Wang JQ, Cheng CX. Numerical simulation of deep foundation pit construction under complex site conditions. Adv Civil Eng. 2021. https://doi.org/10.1155/2021/6669466.
  • 31. Ou C, Liao J, Lin H. Performance of diaphragm wall constructed using the top-down method. J Geotech Geoenviron Eng. 1998;124(9):798–808. https:// doi. org/ 10. 1061/ (ASCE) 1090- 0241(1998)124:9(798).
  • 32. Bahuguna A, Firoj M. Numerical simulation of seismic response of slope–foundation–structure interaction for midrise RC build- ings at various locations. Structures. 2022;44:343–56. https://doi. org/10.1016/j.istruc.2022.08.011.
  • 33. Bahuguna A, Firoj M. Nonlinear seismic performance of nuclear structure with soil-structure interaction. Iran J Sci Technol Trans Civ Eng. 2022;46:2975–88. https:// doi. org/ 10. 1007/ s40996-021-00728-2.
  • 34. Firoj M, Bahuguna A, Kanth A, Agrahari R. Effect of nonlinear soil−structure interaction and lateral stiffness on seismic performance of midrise RC building. J Build Eng. 2022;59:105096. https://doi.org/10.1016/j.jobe.2022.105096.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-465701a3-2e27-4605-94fb-f4d0ff75d647
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.