PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Debris-flow functioning and their contribution to sedimentary budgets : the Peynin subcatchment of the Guil River (Upper Queyras, Southern French Alps)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Peynin catchment (15 km2) is prone to catastrophic floods (June 1957 – Recurrence Interval R.I.>100 yr), June 2000 (R.I.-30 yr) with serious damages to infrastructure and buildings located at the outlet. In this paper, PIT tags tracers and Vensim modelling software are used to better assess the sediment delivery unsteadiness, and more specifically to evaluate the respective role of geomorphological processes on sediment supply during flood event. For the last 20 years, our results highlight a significant variability in sediment delivery from a tributary to another one. According to our studies, we suppose that two torrential tributaries of the Peynin river, the Peyronnelle and Three Arbres subcatchments (<2 km2, representing <15% of the Peynin catchment area) are responsible of 80% of the sediments observed at the outlet of the catchment. Several processes take a part of these sediment transfers, but the efficiency of the sediment cascade in this catchment can be explained by a strong connectivity between sediment erosion area and the main channel of the catchment. Debris and torrential flows triggered during high intensity meteorological event are actually effectively coupled in space and time and guarantee an important sediment supply able to reload the downstream part of the sediment cascade. Recent climate trends, marked by extremes, suggest consequently more damaging events to come, in a context of increasing vulnerable assets.
Czasopismo
Rocznik
Tom
Strony
71--84
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • Department of Geography, UFR GHES, Université Paris-Diderot (Paris 7), Paris, France
autor
  • Department of Geography, UFR GHES, Université Paris-Diderot (Paris 7), Paris, France
autor
  • Department of Geography, UFR SEGGAT, Université Caen Normandie, Caen, France
autor
  • Department of Geography, UFR SEGGAT, Université Caen Normandie, Caen, France
autor
  • Department of Geography, UFR GHES, Université Paris-Diderot (Paris 7), Paris, France
autor
  • Department of Geography and Management, Université de Lyon (Jean Moulin Lyon 3), Lyon, France
autor
  • Department of Geography, UFR GHES, Université Paris-Diderot (Paris 7), Paris, France
Bibliografia
  • Arnaud-Fassetta G., Cossart E., Fort M., 2005. Hydro-geomorphic hazards and impact of man-made structures during the catastrophic flood of June 2000 in the Upper Guil catchment (Queyras, Southern French Alps). Geomorphology 66: 41–67.
  • Arnaud-Fassetta G., Fort M., 2004. La part respective des facteurs hydro-climatiques et anthropiques dans l’évolution récente (1956–2000) de la bande active du Haut-Guil, Queyras, Alpes françaises du Sud. Géosystèmes méditerranéens et montagnards, Un mélange offert à Maurice Jorda, Méditerranée, 1–2,143–156. DOI: 10.3406/medit.2004.3350, 2004.
  • Arnaud-Fassetta G., Fort M., 2014. Hydro-bio-morphological changes and control factors of an upper Alpine valley bottom since the mid-19th century. Case study of the Guil River, Durance catchment, southern French Alps. In: J.M.Carozza, B.Devillers, N.Marriner, C.Morhange (eds), The Little Ice Age in the Mediterranean. Méditerranée 122: 159–182.
  • Bel C., 2017. Analysis of debris-low occurrence in active catchments of the French Alps using monitoring stations. Doctorate PhD Thesis, Université Grenoble-Alpes. Bel C., Navratil O., Liébault F., Fontaine F., Bellot H., Laigle D., 2015. Monitoring Debris Flow Propagation in Steep Erodible Channels. In: G.Lollino, M.Arattano, M.Rinaldi, O.Giustolisi, J.-C.Marechal, G.E.Grant (eds), Engineering Geology for Society and Territory – Vol. 3, Springer International Publishing Switzerland, Ch. 20: 103–108. DOI: 10.1007/978-3-319-09054-2_20.
  • Beniston M., 2003. Climatic change in mountain regions: a review of possible impacts. Climatic Change 59: 5–31.
  • Beniston M., 2005. The risks associated with climatic change in mountain regions. In: U.Huber, H.Bugmann, M.Reasoner (eds), Global change and mountain regions: an overview of current knowledge. Springer, Dordrecht: 511–520.
  • Beniston M., Stoffel M., 2013. Assessing the impacts of climatic change on mountain water resources. Science of The Total Environment 493: 1129–1137. DOI: 10.1016/j.scitotenv.2013.11.122.
  • Brardinoni F., Mao L., Recking A., Rickenmann D., Turowski J.M., 2015. Morphodynamics of steep mountain channels. Earth Surface Processes and Landforms 40: 1560–1562.
  • Caine N., 1974. The geomorphic processes of the Alpine environment.In: J.D.Ives, R.G.Barry (eds), Arctic and Alpine Environment. Methuen, London: 721–748.
  • Carlier B., Carlier G., Gance J., Provost F., Lissak C., Graff K., Viel V., Fort M., Cossart E., Bétard F., Madelin M., Malet J.-P., Arnaud-Fassetta G., 2018a. Distribution spatiale et quantification des stocks sédimentaires d’un petit bassin-versant alpin: l’exemple du Peynin (Queyras, Alpes du Sud). Géomorphologie:relief, processus, environnement 24(1): 59–76. DOI: 10.4000/geomorphologie.11994.
  • Carlier B., Puissant A., Dujarric C., Arnaud-Fassetta G., 2018b.Upgrading of an index-oriented methodology for consequence analysis of natural hazards: application to the Upper Guil catchment (southern French Alps). Natural Hazards and Earth System Sciences 18: 2221–2239. DOI: 10.5194/nhess-18-2221-2018.
  • Chorley R.J., Kennedy B.A., 1971. Physical geography: a systems approach. Prentice-Hall International, London.
  • Cossart E., 2016. L’(in)efficacité géomorphologique des cascades sédimentaires en question: les apports d’une analyse réseau.Cybergeo: European Journal of Geography [Online], Systèmes,Modélisation, Géostatistiques, document 778. DOI: 10.4000/cybergeo.27625 30/08/2017 22:27.
  • Cossart E., Fort M., 2008. Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif des Écrins French Alps since the Little Ice Age. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 62: 115–131. DOI: 10.1080/00291950802095145.
  • Cossart E., Viel V., Lissak C., Reulier R., Fressard M., Delahaye D., 2018. How might sediment connectivity change in space and time? Land Degradradation and Development 29(8) 2595–2613. DOI: 10.1002/ldr.3022.
  • Einhorn B., 2003. Budget sédimentaire d’un bassin-versant torrentiel des Alpes du Sud: le haut Guil (Queyras, Hautes Alpes). Master’s Thesis, Université Paris 7, Diderot.
  • Fort M., 2015. Impact of climate change on mountain environment dynamics. Journal of Alpine Research | Revue de Géographie Alpine [Online], 103-2 | 2015 DOI: 10.4000/rga.2877.
  • Fort M., Arnaud-Fassetta G., Bétard F., Cossart E., Geai M.-L.,Madelin M., Bouccara F., Carlier B., Sourdot G., Tassel A., Bletterie X., Charnay B., 2015. Sediment dynamics and channel adjustments following torrential floods in an upper alpine valley (Guil river, Southern French Alps). In: G. Lollino, M.Arattano, M.Rinaldi, O.Giustolisi, J.-C.Marechal, G.E.Grant (eds), Engineering Geology for Society and Territory – Vol. 3, Springer International Publishing Switzerland, Ch. 65: 313–318. DOI:10.1007/978-3-319-09054-2_65
  • Fort M., Arnaud-Fassetta G., Cossart E., Beaudouin B., Bourbon C., Debail B., Einhorn B., 2002. Impacts et signification hydromorphologique de la crue du Guil de Juin 2000 (Haut Queyras). In: D.Delahaye, F.Levoy, O.Maquaire (eds), Geomorphology: from Expert Opinion to Modelling. A tribute to Professor Jean-Claude Flageollet. CERG Editions, Strasbourg: 159–166.
  • Graff K., 2016. Contribution des laves torrentielles dans un petit bassin versant montagnard. L’exemple du sous-bassin versant de la Peyronnelle (Queyras-France). DYNARISK Master’s Thesis, University Paris-Diderot, Sorbonne-Paris-Cité.
  • Graff K., Viel V., Carlier B., Lissak C., Arnaud-Fassetta G., Fort M., Madelin M., 2016. Sediment tracing from small torrential channels to gravel-bed rivers using PIT tags method. A case study from the upper Guil catchment. Geophysical Research Abstracts, 18, EGU2016-8100-1.
  • Graff K., Viel V., Carlier B., Lissak C., Madelin M., Arnaud-Fassetta G., Fort M., 2018. Traçage sédimentaire des laves torrentielles dans le bassin de la Peyronnelle (Queyras, Alpes françaises du Sud). Géomorphologie: relief, processus, environnement 24(1): 43–57. DOI: 10.4000/geomorphologie.11967.
  • Grandjean G., Thomas L., Bernardie S., The SAMCO Team, 2018. A Novel Multi-Risk Assessment Web-Tool for Evaluating Future Impacts of Global Change in Mountainous Areas. Climate 6(4) 92. DOI: 10.3390/cli6040092.
  • Heckmann T., Vött A., Haas F., Becht M., 2016. Geomorphic process-response systems on different time scales. Zeitschrift für Geomorphologie, Supplementbände 60(1): 1–3.
  • IPCC [Intergovernmental Panel on Climate Change], 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field C.B., Barros V., Stocker T.F., Qin D., Dokken D.J., Ebi K.L., Mastrandrea M.D., Mach K.J., Plattner G.K., Allen S.K., Tignor M., Midgley P.M. (eds)], Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  • Jones A.P., 2000. Late quaternary sediment sources, storage and transfers within mountain basins using clast lithological analysis: Pineta Basin, central Pyrenees, Spain. Geomorphology 34(3–4): 145–161. DOI: 10.1016/S0169-555X(00)00004-0.
  • Jordan P., Slaymaker O., 1991. Holocene sediment production in Lillooet River basin: a sediment budget approach. Géographie physique et Quaternaire 45: 45–57.
  • Koulinski V., 2000. Étude hydraulique du torrent du Peynin sur son cône de déjection. Unpublished Report, Commune d’Aiguilles.
  • Lamarre H., MacVicar B., Roy A., 2005. Using Passive Intergrated Transpondeur (PIT) tags to investigate sediment transport in gravel-bed rivers. Journal of Sedimentary Research 75: 736–741.
  • Laute K., Beylich A.A., 2016. Sediment delivery from headwater slope systems and relief development in steep mountain valleys in western Norway. In: A.A.Beylich, J.C.Dixon, Zb.Zwoliński (eds), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, United Kingdom, Ch. 21: 293–312. DOI: 10.1017/CBO9781107705791.022.
  • Lemoine P., de Gracianski P.-C., Tricart P., 2000. De l’océan à la chaîne de montagnes: Tectonique des plaques dans les Alpes. Gordon and Breach, Paris.
  • Lissak C., Fort M., Arnaud-Fassetta G., Viel V., Carlier B., 2015.Typology of potential high contribution areas in the sediment budget in the Upper Guil Catchment (Queyras, French Alps). Geophysical Research Abstracts, 17, EGU2015-4915-2
  • Morche D., Krautblatter M., Heckmann T., Haas F., Götz J., 2016. Rates of slope and channel processes in the Reintal valley, Bavarian Alps. In: A.A.Beylich, J.C.Dixon, Zb.Zwoliński (eds), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, United Kingdom, Ch. 24: 351–363. DOI: 10.1017/CBO9781107705791.025.
  • Piégay H., Arnaud F., Cassel M., Depret T., Alber A., Michel K., Rollet A. J., Vaudor L., 2016. Suivi par RFID de la mobilité des galets: retour sur 10 ans d’expérience en grandes rivières. Bulletin de la Société Gé ographique de Liège 67: 77–91.
  • PNRQ [Parc Naturel Régional du Queyras], 2016. Diagnostic de vulné rabilité du bassin versant du Guil aux inondations, Final Report, April 2016: 1–48.
  • Rickenmann D., Turowski J.M., Fritschi B., Klaiber A., Ludwig A. 2012. Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surface Processes and Landforms 37(9): 1000–1011. DOI: 10.1002/esp.3225.
  • Rickenmann D., Turowski J.M., Fritschi B., Wyss C., Laronne J.B., Barzilai R., Reid I., Kreisler A., Aigner J., Habersack H., 2014. Bedload transport measurements with impact plate geophones: comparison of sensor calibration at different gravel-bed streams. Earth Surface Processes and Landforms 39(7): 928–942. DOI: 10.1002/esp.3499.
  • Rollet A.-J., Macvicar B., Pié gay H., Roy A., 2008. Utilisation de transpondeurs passifs pour l’estimation du transport sé dimentaire: premiers retours d’expé rience. La Houille Blanche. Revue internationale de l’eau, EDP Sciences.
  • Schrott L., Hufschmidt G., Hankammer M., Hoffmann T., Dikau R., 2003. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55: 45–63. DOI: 10.1016/S0169-555X(03)00131-4.
  • Slaymaker O., 1977. Estimation of sediment yield in temperate alpine environments. In: Erosion and Solid Matter Transport in Inland Waters Proc. Paris Symposium, IAHS-AISH Publication 122: 109–117.
  • Slaymaker O., 2003. The sediment budget as conceptual framework and management tool. Hydrobiologia 494: 71–82.
  • Tricart J., 1958. Étude de la crue de la mi-Juin 1957 dans la vallée du Guil, de l’Ubaye et de la Cerveyrette. Revue de Géographie Alpine 4: 565–627.
  • Tricart J., 1961. Mécanismes normaux et phénomènes catastrophiques dans l’évolution des versants du bassin du Guil (Hautes-Alpes France). Zeitschrift für Geomorphologie 5: 277–301.
  • Tricart P., 1980. Tectonique superposée dans les Alpes occidentales au Sud du Pelvoux; Évolution structurale d’une chaîne de collision. Unpublished Habilitation Thesis, Strasbourg University.
  • Tricart P., Schwartz S., Lardeaux J.-M., Thouvenot F., Du Chaffaut S.A., 2004. Carte géologique de la France à 1:50 000. 848, Aiguilles-Col Saint-Martin. BRGM, Orléans.
  • Viel V., Graff K., Carlier B., Lissak C., Cossart E., Arnaud-Fassetta G., Madelin M., Fort M., 2018. Debris-flow functioning and their contribution to sedimentary budget: the Peyronnelle subcatchment of the Guil River (Upper Queyras, Southern French Alps). In: J.Gudowicz, A.A.Beylich, Zb.Zwoliński (eds), Denudation and Environmental Changes in Different Morphoclimatic Zones, Book of Abstracts, 1st Workshop of the IAG/AIG Working Group DENUCHANGE, Storkowo-Szczecinek (Poland), September 25–27: 25–26.
  • Zwoliński Zb., 2016. Solute and solid cascade system in the Antarctic oases. In: A.A.Beylich, J.C.Dixon, Zb.Zwoliński (eds), Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge University Press, United Kingdom, Ch. 15: 183–198. DOI: 10.1017/CBO9781107705791.016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4653c53a-4a42-4c7d-8bda-b694095c4c7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.