PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive survey of recent advances in facility location problems: Models, solution methods, and applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Logistics management research has significantly benefited from the increased prominence of warehouse management challenges in recent years, which are now extensively utilized in analyzing logistics distribution and transportation networks. Concerning Facility Location Problems and their variations, this work attempts to perform an extensive literature assessment of current model advances and improvements. This study also aims to ascertain the influence and developments in Facility Location Problems, which are classic optimization problems with numerous applications in manufacturing, distribution, transportation, and supply chain management decisions. This study thoroughly analyzes current developments in facility location problems, a category of optimization issues frequently used in network architecture, logistics, and supply chain management. The review analyzes literature from the past decade, categorizing works based on problem variants, mathematical formulations, solution methods, and exact approaches. Key findings highlight significant progress in solving complex facility location problems through advances in mathematical programming, scalable exact methods, and hybrid metaheuristics. Emerging trends such as uncertainty modeling, multi-objective optimization, and sustainability are also discussed.
Twórcy
  • CINEC Campus Pvt Ltd, Millennium Drive, IT Park, Malabe, Sri Lanka
  • CINEC Campus Pvt Ltd, Millennium Drive, IT Park, Malabe, Sri Lanka
Bibliografia
  • Aardal, K., Berf, P. L. V. D., Gijswijt, D., & Li, S. (2015). Approximation algorithms for hard capacitated k-facility location problems. European Journal of Operational Research, 242, 358-368. https://doi.org/10.1016/j.ejor.2014.10.011
  • Abeywardena, J., Jayarathna, N. D., & Madhushani, P. W. G. (2019). Factors affecting on waste disposal cost in supply chain operations and ways of optimising: Evidence from pharmaceutical industry in Sri Lanka. CINEC Academic Journal, 3, 46-62. https://doi.org/10.4038/caj.v3i0.44
  • Ardjmand, E., Park, N., Weckman, G., & Amin-Naseri, M. R. (2014). The discrete unconscious search and its application to uncapacitated facility location problem. Computers & Industrial Engineering, 73, 32-40. https://doi.org/10.1016/j.cie.2014.04.010
  • Beasley, J. E. (1969). A note on solving large p-median problems. European Journal of Operational Research, 21(2), 270-273. https://doi.org/10.1016/j.cie.2014.04.010
  • Biazaran, M., & SeyediNezhad, B. (2009). Center problem. In R. Z. Farahani & M. Hekmatfar (Eds.), Facility Location: Concepts, Models, Algorithms and Case Studies. Springer-Verlag.
  • Bieniek, M. (2015). A note on the facility location problem with stochastic demands. Omega, 55, 53-60. https://doi.org/10.1016/j.omega.2015.02.006
  • Burkard, R. E., & Dollani, H. (2007). Center problems with pos/neg weights on trees. European Journal of Operational Research, 145(3), 483-495. https://doi.org/10.1016/S0377-2217(02)00211-4
  • Christofides, N., & Beasley, J. E. (1983). Extensions to a Lagrangean relaxation approach for the capacitated warehouse location problem. European Journal of Operational Research, 12, 19-28. https://doi.org/10.1016/0377-2217(83)90179-0
  • Church, R. L., & ReVelle, C. S. (1974). The maximal covering location problem. Papers in Regional Science, 32(1), 101-118. https://doi.org/10.1111/j.1435-5597.1974.tb00902.x
  • Church, R. L., & Roberts, K. L. (1984). Generalized coverage models and public facility location. Papers of the Regional Science Association, 53(1), 117-135. https://doi.org/10.1016/0377-2217(83)90179-0
  • Cooper, L. (1963). Location-allocation problems. Operations Research, 11(3), 331-343. https://doi.org/10.1287/opre.11.3.331
  • Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM Review, 6(1), 37-53. https://doi.org/10.1137/1006005
  • Cortinhal, M. J., & Captivo, M. E. (2003). Upper and lower bounds for the single source capacitated location problem. European Journal of Operational Research, 151(2), 333-351. https://doi.org/10.1016/S0377-2217(02)00829-9
  • Dantrakul, S., Likasiri, C., & Pongvuthithum, R. (2014). Applied p-median and p-center algorithms for facility location problems. Expert Systems with Applications, 41, 3596-3604. https://doi.org/10.1016/j.eswa.2013.11.046
  • Daskin, M. S. (1995). Network and discrete location: Models, algorithms, and applications. Wiley. https://doi.org/10.1002/9781118032343
  • Daskin, M. S., Hogan, K., & ReVelle, C. S. (1988). Integration of multiple, excess, backup, and expected covering models. Environment and Planning B: Planning and Design, 15(1), 15-35. https://doi.org/10.1068/b150015
  • Dias, C., Jayarathna, N., & Madhushani, G. (2018). Determinants of Customer Satisfaction in Freight Forwarding Companies in Sri Lanka. iOURS-2018, Open University International Research Sessions "Re-imaging the Future through Research and Innovation". https://doi.org/10.4038/ijms.v5i2.102
  • Domschke, W., & Drexl, A. (1985). ADD-heuristics' starting procedures for capacitated plant location models. European Journal of Operational Research, 21, 47-53. https://doi.org/10.1016/0377-2217(85)90086-4
  • Doong, S. H., Lai, C. C., & Wu, C. H. (2007). Genetic subgradient method for solving location-allocation problems. Applied Soft Computing, 7(1), 373-386. https://doi.org/10.1016/j.asoc.2005.06.008 https://doi.org/10.1016/j.asoc.2005.06.008
  • Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location. Operations Research, 26(6), 992-1009. https://doi.org/10.1287/opre.26.6.992
  • Galvão, R. D., & Raggi, L. A. (1989). A method for solving to optimality uncapacitated location problems. Annals of Operations Research, 18(1), 225-244. https://doi.org/10.1007/BF02097805
  • Ganepola, D. D., Jayarathna, N. D., & Madhushani, G. (2018). An intelligent cost optimized central warehouse and redistribution root plan with truck allocation system in Colombo region for Lion Brewery Ceylon PLC. Journal of Sustainable Development of Transport and Logistics, 3(2), 66-73. https://doi.org/10.14254/jsdtl.2018.3-2.4
  • Geoffrion, A., & McBride, R. (1978). Lagrangean relaxation to capacitated facility location problems. AIIE Transactions, 10, 40-47. https://doi.org/10.1080/05695557808975181
  • Goldengorin, B., Ghosh, D., & Sierksma, G. (2004). Branch and peg algorithms for the simple plant location problem. Computational Operations Research, 31, 241-255. https://doi.org/10.1016/S0305-0548(02)00190-9
  • Guastaroba, G., & Speranza, M. G. (2014). A heuristic for BILP problems: The single source capacitated facility location problem. European Journal of Operational Research, 238, 438-450. https://doi.org/10.1016/j.ejor.2014.04.007
  • Guignard, M. (1988). A Lagrangean dual ascent algorithm for plant location problems. European Journal of Operational Research, 35, 193-200. https://doi.org/10.1016/0377-2217(88)90029-X
  • Hakimi, S. L. (1964). Optimum location of switching center and the absolute centers and medians of a graph. Operations Research, 12(3), 450-459. https://doi.org/10.1287/opre.12.3.450
  • Hansen, P., Brimberg, J., Uroševic, D., & Mladenovic, N. (2007). Primal-dual variable neighborhood search for the simple plant-location problem. INFORMS Journal on Computing, 19(4), 552-564. https://doi.org/10.1287/ijoc.1060.0196
  • Harris, I., Mumford, C. L., & Naim, M. M. (2014). A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling. Transportation Research Part E: Logistics and Transportation Review, 66, 1-22. https://doi.org/10.1016/j.tre.2014.01.010
  • Hindi, H., & Pienkosz, K. (1999). Efficient solution of large scale, single-source, capacitated plant location problem. Journal of the Operational Research Society, 50, 268-274. https://doi.org/10.1016/j.tre.2014.01.010
  • Holmberg, A. (1999). Remarks on Holmberg's generalization. Studia Linguistica, 53(1), 1-39. https://doi.org/10.1111/1467-9582.00038
  • Jacobsen, S. K. (1983). Heuristics for the capacitated plant location model. European Journal of Operational Research, 12, 253-261. https://doi.org/10.1016/0377-2217(83)90195-9
  • Jayarathna, D. G. N. D., Lanel, G. H. J., & Juman, Z. A. M. S. (2021). Modeling a cost benefit transportation model to optimize the redistribution process: Evidence study from Sri Lanka. Journal of Sustainable Development of Transport and Logistics, 6(2), 43-59. https://doi.org/10.14254/jsdtl.2021.6-2.3
  • Jayarathna, D. G. N. D., Lanel, G. H. J., & Juman, Z. A. M. S. (2021). An intelligent cost-optimized warehouse and redistribution root plan with truck allocation system: Evidence from Sri Lanka. Journal of Business and Social Science Review, 2(10).
  • Jayarathna, N. (2019). Optimization in Redistribution Process for Lion Brewery (Ceylon) PLC. LAMBERT Academic Publishing.
  • Jayarathna, N. (2024). Optimizing petroleum redistribution in Sri Lanka: A cost-benefit transportation model. Journal of Sustainable Development of Transport and Logistics, 9(1), 121-136. https://doi.org/10.14254/jsdtl.2024.9-1.9
  • Jayarathna, N. D., & Jayawardene, C. J. (2019). Application of clusters in a transportation network. Journal of Mathematics and Informatics, 17, 21-29. https://doi.org/10.22457/jmi.130aav17a3
  • Jayarathna, N., & Jayasooriya, J. (2018). Identify & Analysis socio-economic impacts upon the people in the vicinity of the Hambanthota Port Project. R4TLI-2018, 3rd International Conference on Research for Transport & Logistics Industry.
  • Jayarathna, N., Lanel, J., & Juman, Z. A. M. S. (2020). Five years of multi-depot vehicle routing problems. Journal of Sustainable Development of Transport and Logistics, 5(2), 109-123. https://doi.org/10.14254/jsdtl.2020.5-2.10
  • Jayarathna, N., Lanel, J., & Juman, Z. A. M. S. (2021). Survey on ten years of multi-depot vehicle routing problems: mathematical models, solution methods and real-life applications. Sustainable Development Research, 3(1), 36-52. https://doi.org/10.30560/sdr.v3n1p36
  • Jayarathna, N., Lanel, J., Juman, S. (2019). A contemporary recapitulation of major findings on vehicle routing problems: models and methodologies. International Journal of Recent Technology and Engineering, 8(2S4), 581-585. https://doi.org/10.35940/ijrte.B1115.0782S419
  • Jayarathna, N., Lanel, J., Juman, S., & Kankanamge, C. A. (2019). Modelling of an Optimal Outbound Logistics System. International Journal of Humanities and Social Science Invention, 8(10), 08-30.
  • Karasakal, O., & Karasakal, E. K. (2004). Maximal covering location model in the presence of partial coverage. Computers & Operations Research, 31(9), 1515-1526.Khumawala, B. M. (1974). An efficient heuristic procedure for the capacitated warehouse location problem. Naval Research Logistics Quarterly, 21, 609-623. https://doi.org/10.1016/S0305-0548(03)00105-9
  • Klincewicz, J. G., & Luss, H. (1986). A Lagrangian relaxation heuristic for capacitated facility location with single-source constraints. Journal of the Operational Research Society, 37(5), 495-500. https://doi.org/10.1057/jors.1986.84
  • Klose, A., & Görtz, S. (2007). A branch-and-price algorithm for the capacitated facility location problem. European Journal of Operational Research, 179, 1109-1125. https://doi.org/10.1016/j.ejor.2005.03.078
  • Kratica, J., Dugošija, D., & Savić, A. (2014). A new mixed integer linear programming model for the multi-level uncapacitated facility location problem. Applied Mathematical Modelling, 38, 2118-2129. https://doi.org/10.1016/j.apm.2013.10.012
  • Küçükdeniz, T., Baray, A., Ecerkale, K., & Esnaf, Ş. (2012). Integrated use of fuzzy c-means and convex programming for capacitated multi-facility location problem. Expert Systems with Applications, 39, 4306-4314. https://doi.org/10.1016/j.eswa.2011.09.102
  • Kuehn, A. A., & Hamburger, M. J. (1963). A heuristic program for locating warehouses. Management Science, 9, 643-666. https://doi.org/10.1287/mnsc.9.4.643
  • Letchford, N., & Miller, S. J. (2014). An aggressive reduction scheme for the simple plant location problem. European Journal of Operational Research, 234(3), 674-682. https://doi.org/10.1016/j.ejor.2013.10.020
  • Lorena, L. A. N., & Senne, E. L. F. (2004). A column generation approach to capacitated p-median problems. Computers & Operations Research, 31(6), 863-876. https://doi.org/10.1016/j.ejor.2013.10.020
  • Magnanti, T. L., & Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29, 464-484. https://doi.org/10.1287/opre.29.3.464
  • Mladenovic, N., Brimberg, J., Hansen, P., & Moreno-Perez, J. A. (2007). The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927-939. https://doi.org/10.1016/j.ejor.2005.05.034
  • Monabbati, E., & Kakhki, H. T. (2015). On a class of subadditive duals for the uncapacitated facility location problem. Applied Mathematics and Computation, 251, 118-131. https://doi.org/10.1016/j.amc.2014.10.072
  • Mulvey, J. M., & Beck, M. P. (1984). Solving capacitated clustering problems. European Journal of Operational Research, 18(3), 339-348. https://doi.org/10.1016/0377-2217(84)90155-3
  • Nagelhout, R. V., & Thompson, G. L. (1980). A single source transportation algorithm. Computers & Operations Research, 7(3), 185-198. https://doi.org/10.1016/0305-0548(80)90005-2
  • Nauss, R. M. (1978). An improved algorithm for the capacitated facility location problem. The Journal of the Operational Research Society, 29, 1195-1201. https://doi.org/10.1057/jors.1978.263
  • Neebe, A. W., & Rao, M. R. (1983). An algorithm for the fixed-charge assigning users to sources problem. The Journal of the Operational Research Society, 34, 1107-1113. https://doi.org/10.1057/jors.1983.242
  • Ng, R. T., & Han, J. (1994). Efficient and effective clustering methods for spatial data mining. In Proceedings of the 20th International Conference on Very Large Data Bases.
  • Nilukshika, A., Vidushanka, A., & Jayarathna, N. (2019). Assessing the Determinants Affect for Hambantota District Public Transportation users when selecting a travel route: A Contemporary Survey Based on Southern Expressway (E001) and Normal Route (A02). KDU-IRC-2019, 12th International Conference. https://doi.org/10.1057/jors.1983.242
  • Ozgen, D., & Gulsun, B. (2014). Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem. Information Sciences, 268, 185-201. https://doi.org/10.1016/j.ins.2014.01.024
  • Ozsoy, F. A., & Pinar, M. C. (2006). An exact algorithm for the capacitated vertex p-center problem. Computers & Operations Research, 33(5), 1420-1436. https://doi.org/10.1016/j.cor.2004.09.035
  • Perera, T., Madhushani, G., & Jayarathna, N. (2019). Determinants of strategic sourcing and the impact of them on Fast Moving Consumer Goods Industry in Sri Lanka. International Journal of Recent Technology and Engineering, 8(2S4), 586-592. https://doi.org/10.35940/ijrte.B1116.0782S419
  • Perera, T., Madhushani, G., & Jayarathna, N. (2019). Determinants of Strategic Sourcing and the impact of them on Fast Moving Consumer Goods Industry in Sri Lanka. International Journal of Recent Technology and Engineering, 8(2S4), 586-592. https://doi.org/10.35940/ijrte.B1116.0782S419
  • Pirkul, H. (1987). Efficient algorithms for the capacitated concentrator location problem. Computers & Operations Research, 14, 197-208. https://doi.org/10.1016/0305-0548(87)90022-0
  • Rahmani, A., & MirHassani, M. A. (2014). A hybrid firefly-genetic algorithm for the capacitated facility location problem. Information Sciences, 283, 70-78. https://doi.org/10.1016/j.ins.2014.06.002
  • ReVelle, C. S., & Eiselt, H. A. (2005). Location analysis: A synthesis and survey. European Journal of Operational Research, 165(1), 1-19. https://doi.org/10.1016/j.ejor.2003.11.032
  • Rönnqvist, M., Tragantalerngsak, S., & Holt, J. (1999). A repeated matching heuristic for the single-source capacitated facility location problem. European Journal of Operational Research, 116, 51-68. https://doi.org/10.1016/j.ejor.2003.11.032
  • Sambola, M. A., Fernandez, E., & Gama, F. S. (2011). The facility location problem with Bernoulli demands. Omega, 39, 335-345. https://doi.org/10.1016/j.omega.2010.08.002
  • Shetty, B. (1990). Approximate solutions to large scale capacitated facility location problems. Applied Mathematics and Computation, 39, 159-175. https://doi.org/10.1016/0096-3003(90)90029-3
  • Storbeck, J. E. (1982). Slack, natural slack and location covering. Socio-Economic Planning Sciences, 16(3), 99-105. https://doi.org/10.1016/0038-0121(82)90020-9
  • Sun, M. (2006). Solving the uncapacitated facility location problem using tabu search. Computers & Operations Research, 33, 2563-2589. https://doi.org/10.1016/j.cor.2005.07.014
  • Toregas, C., Swain, R., ReVelle, C. S., & Bergman, L. (1971). The location of emergency facilities. Operational Research, 19(6), 1363-1373. https://doi.org/10.1287/opre.19.6.1363
  • Tragantalerngsak, S., Holt, J., & Rönnqvist, M. (2000). An exact method for the two-echelon, single source, capacitated facility location problem. European Journal of Operational Research, 123(3), 473-489. https://doi.org/10.1016/S0377-2217(99)00105-8
  • Van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility location. Operations Research, 34, 145-163. https://doi.org/10.1287/opre.34.1.145
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-464f5346-abe7-4206-be97-54ddbff0da42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.