PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibilities of applying Ti (C, N) coatings on prosthetic elements : research with the use of human endothelial cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of our study was to examine the effect of prosthetic alloys with Ti (C, N) coatings on viability and pro life ration of human cells employing an MTT assay with the use of human microvascular endothelial cells derived from the skin – HMEC-1 (Human Microvascular Endothelial Cells-1). Methods: Cylindrical shape samples made of Ni-Cralloy were divided into S1-S5 groups and coated with Ti (C, N) layers with different content of C and N. S0 group – control group without layer. The alloys (S0-S5) were stored in an experimental medium (MCDB131 with antibiotics) for 30 days and then HMEC-1 cells were incubated in the alloy extract for 24 and 96 hours. Next, cell viability was determined using MTT method. Results: In the case of samples incubated for both 24 and 96 hours there are statistically significant differences (with p-value <0.05) between the uncoated samples (S0 group) and all the other Ti (C, N) coated samples. Higher absorbance values were observed in all coated groups than in the control S0 group, where cell growth was statistically significantly lower. Conclusions: During incubation of endothelial cells with coated samples the number of cells was significantly bigger than the number with uncoated alloys. The best viability of cells was obtained from the S = 3 (with 51.94% at. Ti, 28.22% at. C and 19.84% at. N) group of samples. Ti (C, N) coatings may be applied as protective components on prosthetic elements made of base metal alloys.
Rocznik
Strony
129--136
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Medical University of Łódź, Department of General Dentistry, Chair of Restorative Dentistry, Łódź, Poland
  • Medical University of Łódź, Inter-Department of General and Clinical Pharmacology, Department of Pharmacology and Toxicology, Łódź, Poland
autor
  • Medical University of Łódź, Inter-Department of General and Clinical Pharmacology, Department of Pharmacology and Toxicology, Łódź, Poland
autor
  • Medical University of Łódź, Department of Dental Technology, Chair of Restorative Dentistry, Łódź, Poland
  • Łódź University of Technology, Institute of Materials Science and Engineering, Łódź, Poland
Bibliografia
  • [1] ADES E.W., CANDAL F.J., SWERLICK R.A., GEORGE V.G., SUMMERS S., BOSSE D.C., LAWLEY T.J., HMEC-1: establishment of an immortalized human microvascular endothelial cell line, J. Invest. Dermatol., 1992, 99, 683–690.
  • [2] BALÁZSI K., LUKÁCS I.E., GURBÁN S., MENYHÁRD M., BACÁKOVÁ L., VANDROVCOVÁ M., BALÁZSI C., Structural, mechanical and biological comparison of TiC and TiCN nanocomposites films, J. Eur. Ceram. Soc., 2013, 33(12), 2217–2221.
  • [3] BRAMAA M., RHODESE N., HUNTE J., RICCIA A., TEGHILD R., MIGLIACCIOB S., DELLA ROCCAC C., LECCISOTTIA S., LIOIA A., SCANDURRAA M., DE MARIAF G., FERROF D., PUE F., PANZINIG G., POLITIA L., SCANDURRAA R., Effect of titanium carbide coating on the osseointegration response in vitro and in vivo, Biomaterials, 2007, 28, 595–608.
  • [4] CHIEN C.C., LIU K.T., DUH J.G., CHANG K.W., CHUNG K.H., Effect of nitride film coatings on cell compatibility, Dent. Mater., 2008, 24, 986–993.
  • [5] DE VITERI V.S., BARANDIKA M.G., DE GOPEGUI U.R., BAYÓN R., ZUBIZARRETA C., FERNÁNDEZ X., IGARTUA A., AGULLO-RUEDA F., Characterization of Ti-C-N coatings deposited on Ti6Al4V for biomedical applications, J. Inorg. Biochem., 2012, 117, 359–366.
  • [6] EBNER R., LACKNER J.M., WALDHAUSER W., MAJOR R., CZARNOWSKA E., KUSTOSZ R., LACKI P., MAJOR B., Biocompatibile TiN-based novel nanocrystalline films Bulletin of the Polish Academy of Sciences, Technical Sciences, 2006, 54, 167–173.
  • [7] HAK W.J., HYO-JIN L., JUNG-YUN H., KYO-HAN K., TAE-YUB K., Surface Characteristics and Osteoblast Cell Response on TiN- and TiAlN-coated Ti Implant, Biomed. Eng. Lett., 2011, 1, 99–107.
  • [8] JANUSZEWICZ B., KLIMEK L., Investigation of TiCN coatings on steel substrates deposited by means of low pressure cathode ARC technique, Acta Metallurgica Slovaca, 2004, 10, 026–929.
  • [9] KLIMEK L., PIETRZYK B., The influence of deposition conditions on quality of TiO2 coatings deposited by sol-gel, Inżynieria Biomateriałów – Engineering of Biomaterials, 2004, 35–36, 33–35, (in Polish).
  • [10] KLIMEK L., Research on corrosion resistance of Hearenium NA dental alloy with titanium nitride and carbonitride coatings, Dental Magazine – Magazyn Stomatologiczny, 2005, 1(157), 64–66, (in Polish).
  • [11] KLIMEK L., RYLSKA D., Corrosion protection of Ni-Cr and Co-Cr base dental alloys by titanium nitride layers in 0.9% NaCl solution, Inżynieria Materiałowa Nr 3 – Materials Engineering, 2004, 140, 728–732,
  • [12] KLIMEK L., RYLSKA D., WENDLER B., SiC layers on the WIROBOND dental alloy, Inżynieria Materiałowa – Materials Engineering, 2005, 5(147), 616–618, (in Polish).
  • [13] KLIMEK L., Structure and corrosion resistance of the titanium nitrides and nitrocarbides layers on the WIRONIT dental alloy, Inżynieria Biomateriałów – Engineering of Biomaterials, 2005, 42–43, 40–43, (in Polish).
  • [14] KLIMEK L., Titanium Nitrocarbide Coatings on the Hearenium Dental Alloy, Surface Engineering – Inżynieria Powierzchni, 2004, 4, 63–66, (in Polish).
  • [15] KRZAK-ROŚ J., FILIPIAK J., PEZOWICZ C., BASZCZUK A., MILLER M., KOWALSKI M., BĘDZIŃSKI R., The effect of substrate roughness On the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method, Acta Bioeng. Biomech., 2009, 11(2), 21–29.
  • [16] LEHLE K., BUTTSTAEDT J., BIRNBAUM D.E., Expression of adhesion molecules and cytokines in vitro by endothelial cells seeded on various polymer surfaces coated with titanium carboxonitride, J. Biomed. Mater. Res., A, 2003, 65 A (3), 393–401.
  • [17] LEHLE K., LOHN S., REINERTH G., SCHUBERT T., PREUNER J. G., BIRNBAUM D.E., Cytological evaluation of the tissue–implant reaction associated with subcutaneous implantation of polymers coated with titanium carboxonitride in vivo, Biomaterials, 2004, 25, 5457–5466.
  • [18] LIM H.P., KIM J.M., LEE K.M., PARK S.W., Fracture load of titanium crowns coated with gold or titanium nitride and bonded to low-fusing porcelain. J. Prosthet. D, 2011, 105, 164–170.
  • [19] MILENIN A., KOPERNIK M., Microscale analysis of strain–stress state for TiN nanocoating of POLVAD and POLVAD_EXT, Acta Bioeng. Biomech., 2011, 13(4), 11–19.
  • [20] PARK S.W., KIM J.M., LIM H.P., OH G.J., KIM H.S., ONG J.L., LEE K.M., Gold and titanium nitride coatings on cast and machined commercially pure titanium to improve a titanium-porcelain adhesion, Surf. Coat. Technol., 2009, 203, 3243–3249.
  • [21] PAWLAK R., TOMCZYK M., WALCZAK M., The favorable and unfavorable effects of oxide and intermetallic phases in conductive materials using laser micro technologies, Mater. Sci. Eng., B, 2012, 177, 1273–1280.
  • [22] PETERS K., UNGER R.E., KIRKPATRICK C.J., GATTI A.M., MONARI E., Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation, J. Mater. Sci. Mater. Med., 2004, 15(4), 321–325.
  • [23] RIESCHER S., WEHNER D., SCHMID T., ZIMMERMANN H., HARTMANN B., SCHMID C., LEHLE K., Titaniumcarboxonitride layer increased biocompatibility of medical polyetherurethanes, J. Biomed. Mater. Res. B. Appl. Biomater., 2014, 102(1), 141–148.
  • [24] RISTIC L., VUCEVIC D., RADOVIC L., DJORDJEVIC S., NIKACEVIC M., COLIC M., Corrosive and Cytotoxic Properties of Compact Specimens and Microparticles of Ni-Cr Dental Alloy, J. Prosthodont., 2014, 23(3), 22–226.
  • [25] SZYMANOWSKI H., SOBCZYK A., GAZICKI-LIPMAN M., JAKUBOWSKI W., KLIMEK L., Plasma enhanced CVD deposition of titanium oxide for biomedical applications, Surf. Coat. Tech., 2005, 200, 1036–1040.
  • [26] TSARYK R., PETERS K., BARTH S., UNGER R.E., SCHARNWEBER D., KIRKPATRICK C.J., The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy, Biomaterials, 2013, 34(33), 8075–8085.
  • [27] TSARYK R., PETERS K., UNGER R.E., FELDMANN M., HOFFMANN B., HEIDENAU F., KIRKPATRICK C.J., Improving cytocompatibility of Co28Cr6Mo by TiO2 coating: gene expression study in human endothelial cells, J. R. Soc. Interface, 2013, 10(86), 20130428.
  • [28] UNGER R.E., PETERS K., SARTORIS A., FREESE C., KIRKPATRICK C.J., Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay, Biomaterials, 2014, 35(10), 3180–3187.
  • [29] WIKTOROWSKA-OWCZAREK A., The effect of diclofenac on proliferation and production of growth factors by endothelial cells (HMEC-1) under hypoxia and inflammatory conditions, Acta Pharm., 2014, 64, 131–138.
  • [30] WISBEY A., GREGSON P., TUKE M., Application of PVD TiN coating to Co-Cr-Mo based surgical implants, Biomaterials, 1987, 8(6), 477–480
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-464cf423-bc40-4de4-b320-9704d91c70a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.