PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiple regression analysis predicts the dynamic of chondrocytes stimulated by magnetic and electric fields

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to implement a multiple regression analysis to find mathematical models that estimate the proliferative rate and the molecular synthesis of chondrocytes when these cells are stimulated either by magnetic or electric fields. Methods: Data derived from previous studies performed in our laboratory were used for statistical analyses, which consisted of applying magnetic fields (1 and 2 mT) and electric fields (4 and 8 mV/cm) to chondrocytes. Data from cell proliferation and glycosaminoglycan expression were used to adjust and to validate each mathematical model. Results: The root square model efficiently predicted the chondrocyte dynamics, evidencing determination coefficients of R2 = 92.04 for proliferation and R2 = 70.95 for glycosaminoglycans when magnetic fields were applied, and R2 = 88.19 for proliferation and R2 = 74.79 for glycosaminoglycans when electric fields were applied. Conclusions: The reduced, interactive, quadratic and combined models exhibited lower R2 values, nevertheless, they were useful to predict proliferation and glycosaminoglycan synthesis, as the right-skewed distribution, determined by the F parameter, evidenced a Frejected < Fcomputed. The models are efficient since the prediction of chondrocyte dynamics is comparable to the cell growth and to the molecular synthesis observed experimentally. This novel formulation may be dynamic because the variables that fit the models may be modified to improve in vitro procedures focused on cartilage recovery.
Rocznik
Strony
109--124
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • School of Health and Sports Sciences, Master Program in Epidemiology, Fundación Universitaria del Área Andina, Bogotá, Colombia
  • Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
  • Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
  • Research group in Design, Analysis and Development of Engineering Systems – GIDAD, Fundación Universitaria Los Libertadores, Bogotá, Colombia
  • Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
  • Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
Bibliografia
  • [1] AKANJI O., LEE D., BADER D., The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs, Biorheology, 2008. 45 (3–4), 229–243.
  • [2] ARMSTRONG P., BRIGHTON C., STAR A., Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form, J. Orthop. Res., 1988, 6 (2), 265–271.
  • [3] BAKER C., BOCHAROV G., PAUL C., RIHAN F., Modelling and analysis of time-lags in some basic patterns of cell proliferation, J. Math. Biol., 1998. 37 (4), 341–371.
  • [4] BANDEIRAS C., COMPLETO A., Computational Modelling of Tissue-Engineered Cartilage Constructs, [in:] The Computational Mechanics of Bone Tissue: Biological Behaviour, Remodelling Algorithms and Numerical Applications, J. Belinha, M.-C. Manzanares-Céspedes, A. Completo (Eds.), Springer International Publishing, Cham, Switzerland, 2020, 203–222.
  • [5] DE BHOWMICK G., SEN R., SARMAH A., Analysis of growth and intracellular product synthesis dynamics of a microalga cultivated in wastewater cocktail as medium, Biochem. Eng. J., 2019, 149, 107253.
  • [6] BRIGHTON C., TOWNSEND P., Increased cAMP production after short-term capacitively coupled stimulation in bovine growth plate chondrocytes, J. Orthop. Res., 1988, 6 (4), 552–558.
  • [7] BRIGHTON C., UNGER A., STAMBOUGH J., In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields, J. Orthop. Res., 1984, 2 (1), 15–22.
  • [8] BRIGHTON C., WANG W., CLARK C., Up-regulation of matrix in bovine articular cartilage explants by electric fields, Biochem. Biophys. Res. Commun., 2006, 342 (2), 556–561.
  • [9] BRIGHTON C., WANG W., CLARK C., The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants, J. Bone Jt. Surg. Am., 2008, 90 (4), 833–848.
  • [10] CIOMBOR D., AARON R., WANG S., SIMON B., Modification of osteoarthritis by pulsed electromagnetic field: a morphological study, Osteoarthr. Cartil., 2003, 11 (6), 455–462.
  • [11] ELSAYED Y., LEKAKOU C., TOMLINS P., Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts, Biotechnol. Bioeng., 2019, 116 (6), 1509–1522.
  • [12] ESCOBAR J., VACA-GONZÁLEZ J., GUEVARA J., VEGA J., HATA Y., GARZÓN-ALVARADO D., In Vitro Evaluation of the Effect of Stimulation with Magnetic Fields on Chondrocytes, Bioelectromagnetics, 2019, 41 (1), 41–51.
  • [13] FINI M., GIAVARESI G., CARPI A., NICOLINI A., SETTI S., GIARDINO R., Effects of pulsed electromagnetic fields on articular hyaline cartilage: Review of experimental and clinical studies, Biomed. Pharmacother., 2005, 59 (7), 388–394.
  • [14] FINI M., GIAVARESI G., TORRICELLI P., CAVANI F., SETTI S., CANE V., GIARDINO R., Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig, J. Orthop. Res., 2005, 23 (4), 899–908.
  • [15] FIORAVANTI A., NERUCCI F., COLLODEL G., MARKOLL R., MARCOLONGO R., Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy, Ann. Rheum. Dis., 2002, 61 (11), 1032–1033.
  • [16] FREED L., MARQUIS J., LANGER R., VUNJAK-NOVAKOVIC G., Kinetics of chondrocyte growth in cell-polymer implants, Biotechnol. Bioeng., 1994, 43 (7), 597–604.
  • [17] GALBAN C., LOCKE B., Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold, Biotechnol. Bioeng., 1999, 65 (2), 121–132.
  • [18] GARIJO N., MANZANO R., OSTA R., PEREZ M.A., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells, J. Theor. Biol., 2012, 314, 1–9.
  • [19] GONZÁLEZ-VALVERDE I., GARCÍA-AZNAR J., An agent-based and FE approach to simulate cell jamming and collective motion in epithelial layers, Comput. Part. Mech., 2019, 6 (1), 85–96.
  • [20] GOUDAR C., JOERIS K., KONSTANTINOV K., PIRET J., Logistic Equations Effectively Model Mammalian Cell Batch and FedBatch Kinetics by Logically Constraining the Fit, Biotechnol. Prog., 2005, 21 (4), 1109–1118.
  • [21] GROTE M., PALUMBERI V., WAGNER B., BARBERO A., MARTIN I., Dynamic formation of oriented patches in chondrocyte cell cultures, J. Math. Biol., 2011, 63 (4), 757–777.
  • [22] JAHNS M., LOU E., DURDLE N., BAGNALL K., RASO V., CINATS D., BARLEY R., CINATS J., JOMHA N., The effect of pulsed electromagnetic fields on chondrocyte morphology, Med. Biol. Eng. Comput., 2007, 45 (10), 917–925.
  • [23] JARRETT A., LIMA E., HORMUTH D., MCKENNA M., FENG X., EKRUT D., RESENDE A., BROCK A., YANKEELOV T., Mathematical models of tumor cell proliferation: A review of the literature, Expert Rev. Anticancer Ther., 2018, 18 (12), 1271–1286.
  • [24] JIN W., MCCUE S., SIMPSON M., Extended logistic growth model for heterogeneous populations, J. Theor. Biol., 2018, 445, 51–61.
  • [25] JIN W., PENINGTON C., MCCUE S., SIMPSON M., Stochastic simulation tools and continuum models for describing twodimensional collective cell spreading with universal growth functions, Phys. Biol., 2016, 13 (5), 56003.
  • [26] KERKHOFS J., LEIJTEN J., BOLANDER J., LUYTEN F., POST J., GERIS L., A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy, PLoS One, 2016, 11 (8), 1–27.
  • [27] KINO-OKA M., MAEDA Y., YAMAMOTO T., SUGAWARA K., TAYA M., A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage, J. Biosci. Bioeng., 2005, 99 (3), 197–207.
  • [28] VAN LIEDEKERKE P., Quantitative modeling of cell and tissue mechanics withagent-based models, Inria Paris, Sorbonne Université, 2019.
  • [29] DE MATTEI M., CARUSO A., PEZZETTI F., PELLATI A., STABELLINI G., SOLLAZZO V., TRAINA G., Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation, Connect Tissue Res., 2001, 42 (4), 269–279.
  • [30] DE MATTEI M., PASELLO M., PELLATI A., STABELLINI G., MASSARI L., GEMMATI D., CARUSO A., Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants, Connect Tissue Res., 2003, 44 (3–4), 154–159.
  • [31] DE MATTEI M., PELLATI A., PASELLO M., ONGARO A., SETTI S., MASSARI L., GEMMATI D., CARUSO A., Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage, Osteoarthr. Cartil., 2004, 12 (10), 793–800.
  • [32] MENDENHALL W., SINCICH T., Principles of Model Building. In A second course in statistics regression analysis, Prentice Hall, Boston, MA, 2012, 261–325.
  • [33] MINAS T., OGURA T., BRYANT T., Autologous Chondrocyte Implantation, JBJS Essent. Surg. Tech., 2016, 6 (2), 1–11.
  • [34] NICOLAKIS P., KOLLMITZER J., CREVENNA R., BITTNER C., ERDOGMUS C., NICOLAKIS J., Pulsed magnetic field therapy for osteoarthritis of the knee: a double-blind sham-controlled trial, Wien Klin. Wochenschr., 2002, 114 (15–16), 678–684.
  • [35] NICOLIN V., PONTI C., BALDINI G., GIBELLINI D., BORTUL R., ZWEYER M., MARTINELLI B., NARDUCCI P., In vitro exposure of human chondrocytes to pulsed electromagnetic fields, Eur. J. Histochem., 2007, 51 (3), 203–212.
  • [36] OMAR R., ABDULLAH M., HASAN M., ROSFARIZAN M., MARZIAH M., Kinetics and modelling of cell growth and substrate uptake inCentella asiatica cell culture, Biotechnol. Bioprocess Eng., 2006, 11 (3), 223–229.
  • [37] ONGARO A., PELLATI A., MASIERI F., CARUSO A., SETTI S., CADOSSI R., BISCIONE R., MASSARI L., FINI M., DE MATTEI M., Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants, Bioelectromagnetics, 2011, 32 (7), 543–551.
  • [38] PERSSON S., WEI H., MILNE J., PAGE G., SOMERVILLE C., Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets, Proc. Natl. Acad. Sci. U.S.A., 2005, 102 (24), 8633–8638.
  • [39] PIPITONE N., SCOTT D., Magnetic pulse treatment for knee osteoarthritis: a randomised, double-blind, placebo-controlled study, Curr. Med. Res. Opin., 2001, 17 (3), 190–196.
  • [40] RODAN G., BOURRET L., NORTON L., DNA synthesis in cartilage cells is stimulated by oscillating electric fields, Science (80-.). 1978, 199 (4329), 690–692.
  • [41] SARTORI R., LEME J., CARICATI C., TONSO A., NÚÑEZ E., Model comparison to describe bhk-21 cell growth and metabolism in stirred tank bioreactors operated in batch mode, Brazilian Journal of Chemical Engineering, 35, 441–458.
  • [42] SCHMIDT-ROHLFING B., SILNY J., WOODRUFF S., GAVENIS K., Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix, Rheumatol. Int., 2008, 28 (10), 971–977.
  • [43] SHERLEY J., STADLER P., STADLER J., A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells, Cell Prolif., 1995, 28 (3), 137–144.
  • [44] SHIRSAT N., MOHD A., WHELAN J., ENGLISH N., GLENNON B., AL-RUBEAI M., Revisiting Verhulst and Monod models: analysis of batch and fed-batch cultures. Cytotechnology, 2015, 67 (3), 515–530.
  • [45] SZASZ N., HUNG H., SEN S., GRODZINSKY A., Electric field regulation of chondrocyte biosynthesis in agarose gel constructs, [in:] 49th Annual Meeting of the Orthopaedic Research Society, Orthopaedic Research Society, New Orleans, LA, 2003, 1.
  • [46] TROCK D., BOLLET A., DYER Jr. R., FIELDING L., MINER W., MARKOLL R., A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis, J. Rheumatol., 1993, 20 (3), 456–460.
  • [47] TROCK D., BOLLET A., MARKOLL R., The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials, J. Rheumatol., 1994, 21 (10), 1903–1911.
  • [48] VACA-GONZÁLEZ J., GUEVARA J., MONCAYO M., CASTRO--ABRIL H., HATA Y., GARZÓN-ALVARADO D., Biophysical stimuli: a review of electrical and mechanical stimulation in hyaline cartilage, Cartilage, 2019, 10 (2), 157–172.
  • [49] VACA-GONZÁLEZ J., GUEVARA J., VEGA J., GARZÓN--ALVARADO D., An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis, Cell. Mol. Bioeng., 2016, 9 (1), 116–126.
  • [50] VACA-GONZÁLEZ J., GUTIÉRREZ M., GUEVARA J., GARZÓN--ALVARADO D., Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation, In: Silico Biol., 2017, 12 (3–4), 83–93.
  • [51] VELASQUEZ A., Behavioral model of a basic trabecular-bone multi-cellular unit using cellular automaton, Visión Electrónica, 2014. 8 (1), 6–18.
  • [52] WANG W., WANG Z., ZHANG G., CLARK C., BRIGHTON C., Up-regulation of chondrocyte matrix genes and products by electric fields, Clin. Orthop. Relat. Res., 2004, 427, 163–173.
  • [53] WARNE D., BAKER R., SIMPSON M., Optimal Quantification of Contact Inhibition in Cell Populations, Biophys. J., 2017, 113 (9), 1920–1924.
  • [54] XU P., Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture, Biotechnol. Bioeng., 2020, 117 (3), 873–878.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-464cc8e1-4f61-4b2c-b317-2ff849b291ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.