Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We address the problem of reconstructing digital images with finitely many grey levels from the knowledge of their X-rays in a given finite set of lattice directions. The main result of the paper provides sets of 2p (p ≥ 3) lattice directions which uniquely determine images with p grey levels, contained in a finite lattice grid. This extends previous uniqueness results for binary images.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
221--238
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Via Roma 56, 50129 Siena, Italy
autor
- Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
autor
- Universitá Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
Bibliografia
- [1] Ryser H. Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 1957. 9:371-377.
- [2] Gale D. A theorem on flows in networks. Pacific J. Math., 1957. 7:1073-1082. URL http://projecteuclid.org/euclid.pjm/1103043501.
- [3] Gardner RJ. Geometric tomography, volume 58 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, second edition, 2006. ISBN 0-521; 0-521-68493-5. doi:10.1017/CBO9781107341029.
- [4] Herman G, Kuba A. Discrete Tomography: A Historical Overview, pp. 3-34. Appl. Numer. Harmon. Anal. Birkhäuser Boston, Boston, MA. ISBN 978-1-4612-1568-4, 1999. doi:10.1007/978-1-4612-1568-4_1.
- [5] Herman G, Kuba A. Advances in Discrete Tomography and Its Applications (Applied and Numerical Harmonic Analysis). Birkhäuser, 2007. ISBN-0817636145.
- [6] Alpers A, Brunetti S. Stability results for the reconstruction of binary pictures from two projections. Image. Vis. Comput., 2007. 25(10):1599-1608. doi:http://dx.doi.org/10.1016/j.imavis.2006.06.014.
- [7] Brunetti S, Daurat A. Stability in discrete tomography: some positive results. Discrete Appl. Math., 2005. 147(2-3):207-226. doi:10.1016/j.dam.2004.09.012.
- [8] Brunetti S, Peri C. On J-additivity and bounded additivity. Fund. Inform., 2016. 146(2):185-195. doi:10.3233/FI-2016-1380.
- [9] Gritzmann P, Langfeld B, Wiegelmann M. Uniqueness in discrete tomography: three remarks and a corollary. SIAM J. Discrete Math., 2011. 25(4):1589-1599. doi:10.1137/100803262.
- [10] van Dalen B. Stability results for uniquely determined sets from two directions in discrete tomography. Discrete Math., 2009. 309(12):3905-3916. doi:10.1016/j.disc.2008.11.018.
- [11] Wang YR. Characterization of binary patterns and their projections. IEEE Trans. Computers, 1975. C-4(10):1032-1035. doi:10.1109/t-c.1975.224121.
- [12] Hajdu L, Tijdeman R. Algebraic aspects of discrete tomography. J. Reine Angew. Math., 2001. 534:119-128. doi:10.1515/crll.2001.037.
- [13] Alpers A, Gritzmann P. On stability, error correction, and noise compensation in discrete tomography. SIAM J. Discrete Math., 2006. 20(1):227-239. doi:10.1137/040617443.
- [14] Alpers A, Larman DG. The smallest sets of points not determined by their X-rays. Bull. Lond. Math. Soc., 2015. 47(1):171-176. doi:10.1112/blms/bdu111.
- [15] Brunetti S, Dulio P, Hajdu L, Peri C. Ghosts in Discrete Tomography. J. Math Imaging Vision, 2015. 53(2):210-224. doi:10.1007/s10851-015-0571-2.
- [16] Katz M. Questions of uniqueness and resolution in reconstruction from projections. Lecture Notes in Biomath. Springer-Verlag, 1978. ISBN-9783540090878. doi:10.1007/978-3-642-45507-0.
- [17] Dulio P, Frosini A, Pagani S. A Geometrical Characterization of Regions of Uniqueness and Applications to Discrete Tomography. Inverse Problems, 2015. 31(12):125011. doi:10.1088/0266-5611/31/12/125011.
- [18] Dulio P, Pagani SMC, Frosini A. Regions of uniqueness quickly reconstructed by three directions in discrete tomography. Fund. Inform., 2017. 155(4):407-423. doi:10.3233/FI-2017-1592.
- [19] Brunetti S, Dulio P, Peri C. Characterization of {- 1, 0, + 1} Valued Functions in Discrete Tomography under Sets of Four Directions. In: Discrete Geometry for Computer Imagery - 16th IAPR International Conference, DGCI 2011, Nancy, France, April 6-8, 2011. Proceedings. 2011 pp. 394-405. doi:10.1007/978-3-642-19867-0_33.
- [20] Brunetti S, Dulio P, Peri C. Discrete tomography determination of bounded lattice sets from four X-rays. Discrete Appl. Math., 2013. 161(15):2281-2292. doi:10.1016/j.dam.2012.09.010.
- [21] Brunetti S, Dulio P, Peri C. Discrete tomography determination of bounded sets in Zn. Discrete Appl. Math., 2015. 183:20-30. doi:10.1016/j.dam.2014.01.016.
- [22] Stolk AP. Discrete Tomography for Integer-valued Functions,. Ph.D. thesis, Leiden University, 2011.
- [23] Hajdu L. Unique reconstruction of bounded sets in discrete tomography. In: Proceedings of the Workshop on Discrete Tomography and its Applications, volume 20 of Electron. Notes Discrete Math. Elsevier, Amsterdam, 2005 pp. 15-25 (electronic). doi:10.1016/j.endm.2005.04.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4649c837-a881-47a2-afc8-6bce5caa7722