PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer enhancement of graphite–modified concrete energy piles

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designed for utilizing the ground-source systems for heating and cooling, the use of energy piles in commercial and residential buildings has increased exponentially especially in Europe. The heat transfer efficiency of energy piles may directly influence the energy-saving effect on buildings. Apart from the optimization of pipe laying, many other factors can also influence the heat transfer efficiency of energy piles. In this study, a new method that can increase the heat transfer efficiency of energy piles was proposed to explore the influences of adding graphite powder with high thermal conductivity to pile concrete on the heat transfer efficiency of energy piles. The thermal resistance models of energy piles in three different pipe-burying modes were constructed by combining the 2D plane method and the heat transfer mechanism of energy piles. The internal heat transfer characteristics of energy piles at different temperatures, graphite contents, and pipe-burying modes were discussed by combining the indoor thermal conductivity test of graphite-modified concrete. The external heat transfer characteristics of graphite-modified concrete energy piles were analyzed through numerical simulation analysis. Results demonstrate that the increase in graphite contents is beneficial to heat transfer in energy piles. In particular, thermal conductivity significantly increases when the graphite content exceeds 5%. The high temperature in the pipe is also conducive to the thermal conductivity of the energy pile. The thermal conductivity of the concrete samples with 8% graphite content in an environment at 40°C is 1.35 times that at 20°C. The heat transfer efficiency of the spiral coil-type energy pile is higher than those of single-U and double-U tube energy piles. The proposed method provides a certain reference for improving the heat transfer efficiency of energy piles and constructing the internal and external heat transfer models in energy piles.
Rocznik
Strony
345--351
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Electrical Computer and Telecommunications Engineering, University of Wollongong, Gwynneville NSW 2500, Australia
Bibliografia
  • [1] Z. Zhou, Solar-technologies in german architecture, World Architecture 1 (12) (2002) 54–55.
  • [2] N. Yavari, A. M. Tang, J.-M. Pereira, G. Hassen, Mechanical behaviour of a small-scale energy pile in saturated clay, Géotechnique 66 (11) (2016) 878–887.
  • [3] C. K. Lee, H. N. Lam, A simplified model of energy pile for groundsource heat pump systems, Energy 55 (1) (2013) 838–845.
  • [4] A. A. Mehrizi, S. Porkhial, B. Bezyan, H. Lotfizadeh, Energy pile foundation simulation for different configurations of ground source heat exchanger, International Communications in Heat & Mass Transfer 70 (2016) 105–114.
  • [5] D. Rammal, H. Mroueh, S. Burlon, Impact of thermal solicitations on the design of energy piles, Renewable and Sustainable Energy Reviews 92 (2018) 111–120.
  • [6] G. H. Go, S. Yoon, D. W. Park, S. R. Lee, Thermal behavior of energy pile considering ground thermal conductivity and thermal interference between piles, Journal of the Korean Society of Civil Engineers 33 (6) (2013) 19–28.
  • [7] R. Caulk, E. Ghazanfari, J. S. McCartney, Parameterization of a calibrated geothermal energy pile model, Geomechanics for Energy & the Environment 5 (2016) 1–15.
  • [8] P. Cui, X. Li, Y. Man, Z. Fang, Heat transfer analysis of pile geothermal heat exchangers with spiral coils, Applied Energy 88 (11) (2011) 4113– 4119.
  • [9] H. Park, S. R. Lee, S. Yoon, J. C. Choi, Evaluation of thermal response and performance of phc energy pile: Field experiments and numerical simulation, Applied Energy 103 (1) (2013) 12–24.
  • [10] F. A, M. R, T. M, H. P. A, Numerical modeling of thermal response tests in energy piles, Journal of Natural Medicines 68 (3) (2014) 505–512.
  • [11] K. Morino, T. Oka, Study on heat exchanged in soil by circulating water in a steel pile, Energy & Buildings 21 (1) (1994) 65–78.
  • [12] D. Pahud, A. Fromentin, M. Hubbuch, Heat exchanger pile system for heating and cooling at zu rich airport, IEA Heat Pump 17 (1) (1999) 15–16.
  • [13] Y. Hamada, H. Saitoh, M. Nakamura, H. Kubota, K. Ochifuji, Field performance of an energy pile system for space heating, Energy & Buildings 39 (5) (2007) 517–524.
  • [14] A. Zarrella, M. D. Carli, A. Galgaro, Thermal performance of two types of energy foundation pile: Helical pipe and triple u-tube, Applied Thermal Engineering 61 (2) (2013) 301–310.
  • [15] F. Dupray, L. Laloui, A. Kazangba, Numerical analysis of seasonal heat storage in an energy pile foundation, Computers & Geotechnics 55 (1) (2014) 67–77.
  • [16] G. H. Go, S. R. Lee, S. Yoon, H. B. Kang, Design of spiral coil phc energy pile considering effective borehole thermal resistance and groundwater advection effects, Applied Energy 125 (2) (2014) 165–178.
  • [17] S. Park, D. Lee, H. J. Choi, K. Jung, H. Choi, Relative constructability and thermal performance of cast-in-place concrete energy pile: Coiltype ghex (ground heat exchanger), Energy 81 (2015) 56–66.
  • [18] A. Carotenuto, P. Marotta, N. Massarotti, A. Mauro, G. Normino, Energy piles for ground source heat pump applications: comparison of heat transfer performance for different design and operating parameters, Applied Thermal Engineering 124 (2017) 1492–1504.
  • [19] K. Li, X. Zhang, J. Gao, J. Liu, Research of heat transfer performance of pile-foundation ground-coupled heat pump and soil temperature rise, 2008, pp. 54–59.
  • [20] W. Zhang, J. Liu, T. Huang, D. Wu, B. H. Fang, Heat transfer analysis of the ground heat exchanger inside foundation piles, Refrigeration & Air Conditioning: Sichuan 23 (4) (2009) 105–108.
  • [21] X. Li, Z. Chen, J. Zhao, L. Li, Y. Ma, Experiment and numerical simulation on u-vertical ground coupled heat exchanger with sandstone and cement backfills, Journal of Tianjin University 38 (8) (2005) 679–683.
  • [22] J. Zhao, T. Wu, Q. Zhu, Y. Gong, Thermal simulation on the steady heat transfer of the u-tube energy piles heat exchanger, Acta Energiae Solaris Sinica 26 (1) (2005) 59–62.
  • [23] Z. Chen, S. Zhao, Z. Zhang, Heat transfer analysis of energy piles with parallel connected u-tubes, Engineering Mechanics 30 (5) (2013) 238–243.
  • [24] X. Li, H. Guo, X. Cheng, Experimental and numerical study on temperature distribution in energy piles, China Civil Engineering Journal 49 (4) (2016) 102–110.
  • [25] H. Zhao, S. Gui, R. Tang, J. Du, Applicability of heat transfer model of energy pile with buried spiral pipe and its experimental verification, Journal of Yangtze River Scientific Research Institute 34 (4) (2017) 111–116.
  • [26] H. Liu, D. Wu, G. Kong, H. Wu, D. Wu, Thermal response of energy piles with embedded tube and tied tube, Rock and Soil Mechanics 38 (2) (2017) 333–340.
  • [27] C. B. M. Academy, Gb/t 17671-1999 method of testing cement– determination of strength (1999).
  • [28] C. B. M. Academy, Gb/t 2419-2005 test method for the fluidity of cement mortar (2005).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4647964a-cfbd-4935-9d9a-7fccd9c0ddf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.