PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Recent studies on particulate reinforced AZ91 magnesium composites fabricated by stir casting - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium Metal Matrix Composites (Mg MMC) have been the focus of consideration by many researchers for the past few years. Many applications of Mg MMCs were evolved in less span of time in the automotive and aerospace sector to capture the benefit of high strength to weight ratio along with improved corrosion resistance. However, the performance of these materials in critical conditions is significantly influenced by several factors including the fabrication methods used for processing the composites. Most of the papers addressed all the manufacturing strategies of Mg MMC but no paper was recognized as a dedicated source for magnesium composites prepared through STIR casting process. Since STIR casting is the least expensive and most common process in the preparation of composites, this paper reviews particulate based Mg MMCs fabricated with STIR casting technology. AZ91 series alloys are considered as the matrix material while the effect of different particle reinforcements, sizes, weight fractions on mechanical and tribological responses are elaborated in support with micro structural examinations. Technical difficulties and latest innovations happened during the last decade in making Mg MMCs as high performance material are also presented.
Rocznik
Strony
115--126
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Andhra University College of Engineering, Visakhapatnam, Andhra Pradesh, India
  • Department of Mechanical Engineering, Andhra University College of Engineering, Visakhapatnam, Andhra Pradesh, India
  • Department of Mechanical Engineering, Bapatla Engineering College, Bapatla, Andhra Pradesh, India
Bibliografia
  • 1. A.A. Luo. (2002). Magnesium: Current and potential automotive applications, JOM, Vol 54, Issue 2, pp: 42-48, 2002. https://doi.org/10.1007/BF02701073
  • 2. Mustafa Kemal Kulekci. (2008). Magnesium and its alloys applications in automotive industry, International Journal of Advanced Manufacturing Technology, Vol. 39, Issue 9-10, pp: 851–865. https://doi.org/10.1007/s00170-007-1279-2
  • 3. D. Sameer Kumar, C. Tara Sasanka, K. Ravindra, K.N.S. Suman. (2015). Magnesium and Its Alloys in Automotive Applications - A Review, American Journal of Materials Science and Technology, Vol.4, No.1, pp. 12-30. http://dx.doi.org/10.7726/ajmst.2015.1002
  • 4. M.M. Avedesian, H. Baker. (1999). Magnesium & Magnesium Alloys, ASM Specialty Handbook, ASM International. USA.
  • 5. M. Gupta, N.M.L. Sharon. (2011). Magnesium, Magnesium Alloys, and Magnesium Composites. John Wiley & Sons , USA.
  • 6. D. Sameer Kumar, C. Tarasasanka. (2017). Magnesiumand its Alloys for Automotive in Lightweight and Sustainable Materials for Automotive Applications Published by CRC Press (Taylor & Francis Group), USA. pp: 329-368, 2017. ISBN 9781498756877.
  • 7. Horst E. Friedrich, Barry L. Mordike. (2006). Magnesium Technology: Metallurgy, Design Data, Applications Springer-Verlag Berlin Heidelberg, New York. ISBN-13 978-3-540-20599-9.
  • 8. P.K. Mallick. (2010). Materials, Design and Manufacturing for Lightweight Vehicles, CRC Press, USA.
  • 9. D.J. Lloyd. (1994), Particle reinforced Aluminum and Magnesium Matrix Composites, Int. Mater. Rev., Vol 39 (1), pp: 1-23. https://doi.org/10.1179/imr.1994.39.1.1
  • 10. Abhijit Dey and Krishna Murari Pandey. (2015). Magnesium Metal Matrix Composites - A Review, Rev. Adv. Mater. Sci. 42, pp: 58-67.
  • 11. Ye H.Z. and Liu X.Y. (2004). Review of recent studies in magnesium matrix composites. Journal of Materials Science, 39, 6153-6171. https://doi.org/10.1023/B:JMSC.0000043583.47148.31.
  • 12. Guohong Ma, Hao Xiao, Jia Ye & Yinshui He. (2020). Research status and development of magnesium matrix composites. Materials Science and Technology. https://doi.org/10.1080/02670836.2020.1732610
  • 13. Amandeep Singh, Niraj Bala. (2017). Evaluation Of Microstructural And Mechanical Behavior of Some Magnesium Metal Matrix Composites. Advanced Materials Manufacturing & Characterization, 7(2), pp: 38-43. http://dx.doi.org/10.11127/ijammc2017.10.01
  • 14. D. Dash, S. Samanta, R.N. Rai. (2018). Study on Fabrication of Magnesium based Metal Matrix Composites and its improvement in Mechanical and Tribological Properties - A Review, IOP Conf. Series: Materials Science and Engineering, 377, 012133. https://doi.org/10.1088/1757-899X/377/1/012133
  • 15. Hajo Dieringa. (2018). Processing of Magnesium-Based Metal Matrix Nanocomposites by Ultrasound-Assisted Particle Dispersion : A Review, Metals, 8, 431, https://doi.org/10.3390/met8060431
  • 16. Information from http://mg.tripod.com/asm_prop.htm accessed on 02.04.2020
  • 17. Charles Moosbrugger. (2017). Engineering properties of magnesium alloys, ASM International, USA. EISBN:978-1-62708-144-2.
  • 18. Bruce Gwynne, & Paul Lyon. (2007). Magnesium Alloys in Aerospace Applications, Past Concerns, Current Solutions, Triennial International Aircraft Fire & Cabin Safety Research Conference, October 29-November 1, 2007. http://www.fire.tc.faa.gov/2007conference/files/Materials_Fire_Safety/WedAM/GwynneMagnesium/GwynneMagnesiumPres.pdf
  • 19. Murugan, Srinivasan & Nguyen, Bau & Gupta, Manoj. (2019). Synthesis of Magnesium Based Nano-composites, Magnesium - The Wonder Element for Engineering/Biomedical Applications, Intech Open. http://dx.doi.org/10.5772/intechopen.84189
  • 20. J. Hashim, L. Looney, M.S.J. Hashmi. (1999). Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology, Vol 92-93, pp: 1-7, 1999. https://doi.org/10.1016/S0924-0136(99)00118-1
  • 21. Poddar P., Srivastava V.C., De P.K., et al. (2007) Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater Sci Eng A., 460-461:357-364. https://doi.org/10.1016/j.msea.2007.01.052
  • 22. X.J. Wang et al. (2009). The interfacial characteristic of SiCp/AZ91 magnesium matrix composites fabricated by stir casting, J Mater Sci, 44, 2759–2764. https://doi.org/10.1007/s10853-009-3360-8
  • 23. Kandil. (2012) .Microstructure And Mechanical Properties Of SiCp/AZ91 Magnesium Matrix Composites Processed By Stir Casting. Journal of Engineering Sciences, Assiut University, Vol. 40, No 1, pp. 255-270.
  • 24. Sujayakumar Prasanth et al. (2012). Microstructure and Properties of Stir Cast AZ91 Mg Alloy – SiCp Composites, Materials Science Forum, Vol. 710, pp. 365-370.
  • 25. https://doi.org/10.4028/www.scientific.net/MSF.710.365
  • 26. Prasanth SUJAYAKUMAR et al. (2013). Sliding Wear Behavior of Stir Cast AZ91/ SiCp Composites. Journal of Solid Mechanics and Materials Engineering, Vol. 7, No. 2, 169-175. https://doi.org/10.1299/jmmp.7.169
  • 27. K.K. Ajith Kumar, Abhilash Viswanath, T.P.D. Rajan, U.T.S. Pillai, B.C. Pai. (2014). Physical, Mechanical, and Tribological Attributes of Stir-Cast AZ91/SiCp Composite, Acta Metall. Sin. (Engl. Lett.), 27(2), 295-305. https://doi.org/10.1007/s40195-014-0045-3
  • 28. Abhilash Viswanath et al. (2015). Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites, Journal of Magnesium and Alloys, Volume 3, Issue 1, Pages 16-22. https://doi.org/10.1016/j.jma.2015.01.001
  • 29. P. Poddar, S. Mukherjee, and K.L. Sahoo. (2009). The Microstructure and Mechanical Properties of SiC Reinforced Magnesium Based Composites by Rheocasting Process, Journal of Materials Engineering and Performance, Vol. 18, pp: 849-855. https://doi.org/10.1007/s11665-008-9334-1
  • 30. S. Aravindan et al. (2015). Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process, Journal of Magnesium and Alloys, Vol 3, pp: 52-62. https://doi.org/10.1016/j.jma.2014.12.008
  • 31. WANG Zhao-hui et al. (2010). SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method, Trans. Nonferrous Met. Soc. China, 20, s1029-s1032. https://doi.org/10.1016/S1003-6326(10)60625-5
  • 32. X.Y. Jia et al. (2009). Magnesium matrix nanocomposites fabricated by ultrasonic assisted casting. International Journal of Cast Metals Research, Volume 22, Issue 1-4. 196-199. https://doi.org/10.1179/136404609X367704
  • 33. Liu Shiying et al. (2009). Mechanical Properties and Microstrutures of Nano-Sized SiC Particles Reinforced AZ91D Nanocomposites Fabricated by High Intensity Ultrasonic Assisted Casting. Materials Science Forum, Vols. 618-619, pp 449-452. https://doi.org/10.4028/ www.scientific.net/MSF.618-619.449
  • 34. Anil Kumar, Santosh Kumar, N.K. Mukhopadhyay. (2018). Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites. Journal of Magnesium and Alloys, Volume 6, Issue 3, Pages 245-254. https://doi.org/10.1016/j.jma.2018.05.006
  • 35. Asgari A., Sedighi M., Krajnik P. (2019). Magnesium alloy silicon carbide composite fabrication using chips waste. J Clean Prod., 232, 1187-1194. https://doi.org/10.1016/j.jclepro.2019.06.018
  • 36. M. Paramsothy, J. Chan, R. Kwok, M. Gupta. (2012). Al2O3 nanoparticle addition to commercial magnesium alloys: multiple beneficial Effects. Nanomaterials, 2, 147-162. https://doi.org/10.3390/nano2020147
  • 37. Maher Mounib et al. (2014). Reactivity and Microstructure of Al2O3-Reinforced Magnesium-Matrix Composites. Advances in Materials Science and Engineering, Volume 2014, Article ID 476079, 6 pages. http://dx.doi.org/10.1155/2014/476079
  • 38. Yadav, S.D., Bhingole, P.P., Chaudhari, G.P., Nath, S.K., & Sommitsch, C. (2015). Hybrid Processing of AZ91 Magnesium Alloy/Nano-Al2O3 Composites. Key Engineering Materials, 651-653, 783-788. https://doi.org/10.4028/www.scientific.net/KEM.651-653.783
  • 39. Mahmoud, M.G et al. (2014). Effect Of Nano-Reinforcement On Properties Of Cast Mg-Al Alloy Az91, Magnesium Technology 2014 Edited by: Martyn Alderman, Michele V. Manuel, Norbert Hort, and Neale R. Neelameggham TMS (The Minerals, Metals & Materials Society), PP: 471-475.
  • 40. Sameer Kumar D., K.N.S. Suman, et al. (2017). Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method, Journal of Magnesium and Alloys, Volume 5, Issue 1, Pages 48-55. https://dx.doi.org/10.1016/j.jma.2016.11.006
  • 41. Tarasasanka C. Ravindra K. (2017). Application of Taguchi techniques to study dry sliding wear behaviour of magnesium matrix composites reinforced with alumina nanoparticles. Journal of Engineering Science and Technology, Vol. 12, No. 11, 2855-2865.
  • 42. C. Tarasasanka, K. Snehita, K. Ravindra, D. Sameer Kumar. (2019). Optimization of dry sliding wear properties of AZ91E/ nano Al2O3 reinforced metal matrix composite with grey relational analysis, International Journal of Engineering, Science and Technology, Vol. 11, No. 4, pp. 41-48. http://dx.doi.org/10.4314/ijest.v11i4.4
  • 43. Sameer Kumar D, K.N.S. Suman and Palash Poddar. (2017). Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3composites. Material Research Express, 4, 066505. https://doi.org/10.1088/2053-1591/aa6fe4
  • 44. Devarakonda S.K., Koka N.S.S. (2018). Estimation of high cycle fatigue life of AZ91E-Ni coated Al2O3 particulate nanocomposites using reliability based approach. J Inst Eng (India) Series D., 99, 201–208. https://doi.org/10.1007/s40033-018-0164-5
  • 45. D. Sameer Kumar, K.N.S. Suman & Palash Poddar. (2020). A study on the impact and fatigue failure of AZ91E–Ni coated alumina composites, Canadian Metallurgical Quarterly. https://doi.org/10.1080/00084433.2020.1741913
  • 46. Anil Kumar et al. (2018). Casting and Characterization of Tic Particulate Reinforced AZ91 Magnesium Alloy Metal Matrix Composite Through Stir Casting Process. International Journal of Mechanical Engineering and Technology (IJMET), Volume 9, Issue 6, pp. 856-863.
  • 47. Nagaraj M. Chelliah, Harpreet Singh, M.K. Surappa. (2016). Correlation between microstructure and wear behavior of AZX915 Mg-alloy reinforced with 12 wt% TiC particles by stir-casting process, Journal of Magnesium and Alloys, Volume 4, Issue 4, Pages 306-313. https://doi.org/10.1016/j.jma.2016.09.002
  • 48. M.E. Turan et al. (2016). Wear behaviours of SiC and B4C particle reinforced AZ91 Magnesium matrix metal composites, World Academy of Science, Engineering and Technology - International Journal of Materials and Metallurgical Engineering, Vol: 10, No: 9, 1224-1227. https://doi.org/10.5281/zenodo.1126900
  • 49. K Ponappa, S. Aravindan and P. Venkateswara Rao. (2012). Influence of Y2O3 particles on mechanical properties of magnesium and magnesium alloy (AZ91D). Journal of Composite Materials, 47(10), 1231-1239. https://doi.org/10.1177%2F0021998312446501
  • 50. Katarzyna N. Braszczyńska-Malik and Elżbieta Przełożyńska. (2014). Microstructure Of AZ91-Ti6Al4V Metal-Metal Composite In As-Cast Conditions And After Heat Treatment. Composites theory and practice, 14:4, 224-228.
  • 51. Zhang, C.-L., Wang, X.-J., Wang, X.-M., Hu, X.-S., & Wu, K. (2016). Fabrication, microstructure and mechanical properties of Mg matrix composites reinforced by high volume fraction of sphere TC4 particles. Journal of Magnesium and Alloys, 4(4), 286-294. https://doi.org/10.1016/j.jma.2016.10.003
  • 52. Qiang, Zhang. (2010). Development of Hybrid Mg-based Composites, Electronic Theses and Dissertations. 204. https://scholar.uwindsor.ca/etd/204.
  • 53. E. Suneesh and M. Sivapragash. (2018). Comprehensive studies on processing and characterization of hybrid magnesium composites. Materials and Manufacturing Processes. https://doi.org/10.1080/10426914.2018.1453155
  • 54. Ravi Kumar Saranu, Ratnam Chanamala, Srinivasa Rao Putti. (2020). Processing, micro structures and mechanical properties of AZ91E, SiC and fly ash composites: A review. Materials Today: Proceedings, Available online 13 March 2020. https://doi.org/10.1016/j.matpr.2020.02.555
  • 55. Xia Zhou et al. (2012). Tensile Mechanical Properties And Strengthening Mechanism Of Hybrid Carbon Nanotube And Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites. Journal of Nanomaterials, Volume 2012, Article ID 851862, 7 pages. https://doi.org/10.1155/2012/851862
  • 56. Mohammed Ali, R.M. Lathe. (2014). Wear Behavior of Mg Alloy Reinforced With Aluminum Oxide and Silicon Carbide Particulates. IJSRD - International Journal for Scientific Research & Development, Vol. 2, Issue 07, pp: 203-208.
  • 57. B.M. Girish, B.M. Satish, Sadanand Sarapure, D.R. Somashekar and Basawaraj. (2015). Wear Behavior Of Magnesium Alloy AZ91 Hybrid Composite Materials. Tribology Transactions, 58:3, 481-489. https://doi.org/10.1080/10402004.2014.987858
  • 58. Aatthisugan, A. Razal Rose, D. Selwyn Jebadurai. (2017). Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. Journal of Magnesium and Alloys, Volume 5, Issue 1, Pages 20-25. https://doi.org/10.1016/j.jma.2016.12.004
  • 59. N. Nafeed et al. (2018). Evaluation Of Mechanical Properties Of Mg Alloy/Sic/Graphite Hybrid Metal Matrix Composites Using Desirability Approach. International Journal of Pure and Applied Mathematics, Volume 119, No. 12, 15619-15627.
  • 60. Shruti, Babu Reddy, Ambadas. (2018). Fabrication And Characterization Of Mechanical And Tribological Properties Of Sic/Al2O3/AZ91 Magnesium Based Composite Material. Journal of Emerging Technologies and Innovative Research (JETIR), Volume 5, Issue 1, pp: 43-49.
  • 61. Sadanand Sarapure et al. (2018). Microstructure And Mechanical Behavior Of Magnesium Alloy AZ91 Hybrid Composites. IOP Conf. Series: Materials Science and Engineering, 310, 012161. https://doi.org/10.1088/1757-899X/310/1/012161
  • 62. S. Jayabharathy, P.Mathiazhagan. (2019). Investigation of mechanical and wear behaviour of AZ91 magnesium matrix hybrid composite with TiO2/ graphene. Materials Today: Proceedings, Available online 24 October 2019. https://doi.org/10.1016/j.matpr.2019.09.142
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-463ed3f7-c73c-41ae-96f8-fb52327d1ebb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.