PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis on the Conformity between the Closed-Circuit Embroidery Elements of Different Widths and the Digitally Designed Elements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The embroidery process is one of the means of joining textile materials into a system, which is widely applied in the creation of products of special destinations. The development of the functionality of embroidery systems is indissoluble from high-quality requirements for the accuracy of the form of the element. In the embroidery process, the system of textile materials experiences various dynamic loads, multiple stretching, and crushing; therefore, the geometrical parameters of the embroidery element change. The objective of this paper was to analyze the widths of the different square-form closed-circuit embroidery elements and also to perform their analysis with the purpose to evaluate the embroidery accuracy of the embroidered elements. Test samples were prepared in the form of square-form closed-circuit embroidery elements of five different contour widths: 6 mm, 10 mm, 14 mm, 18 mm, and 22 mm. During the investigation, it has been determined that in most cases the contour widths of the five closed-circuit square-form embroidery elements were obtained, smaller than the size of the digitally designed element.
Rocznik
Strony
250--256
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Institute of Architecture and Construction, Kaunas University of Technology, Tunelio Str. 60, Kaunas LT-44405, Lithuania
  • Institute of Architecture and Construction, Kaunas University of Technology, Tunelio Str. 60, Kaunas LT-44405, Lithuania
  • Institute of Architecture and Construction, Kaunas University of Technology, Tunelio Str. 60, Kaunas LT-44405, Lithuania
  • Institute of Architecture and Construction, Kaunas University of Technology, Tunelio Str. 60, Kaunas LT-44405, Lithuania
  • JSC “UAB Granberg LT”, Raitininkų g. 2E-5, Vilnius, Lithuania
Bibliografia
  • [1] Radavičienė, S., Jucienė, M., Juchnevičienė, Ž., Čepukonė, L., Vilumsone, A., et al. (2014). Analysis of shape nonconformity between embroidered element and its digital image. Materials science (Medžiagotyra), 20(1): 84-89. ISSN 1392–1320.
  • [2] Akerfeldt, M., Lund, A., Walkenström, P. (2015). Textile sensing glove with piezoelectric PVDF fibers and printed electrodes of PEDOT:PSS. Textile Research Journal, 85(17), 1789-1799.
  • [3] Chernenko, D. А. (2006). Systematization of design parameters for automated em-broidery and modelling of deformation system of “Fabric-Embroidery“ Ph. D. Thesis, Orel, Russia, 132 p.
  • [4] Tian, Q. M., Luo, Y. P., Hu, D. C. (2006). Spiral-fashion embroidery path generation in embroidery CAD systems. Computer-Aided Design, 38, 125-133.
  • [5] Radavičienė, S., Jucienė, M. (2012). Influence of embroidery threads on the accuracy of embroidery pattern dimensions. Fibres & Textiles in Eastern Europe, 20, 3(92), 92-97.
  • [6] Dobilaitė, V., Petrauskas, A. (2002). The method of seam pucker evaluation. Material Science (Medžiagotyra), 9(1), 209-212.
  • [7] Juchnevičienė, Ž., Jucienė, M., Radavičienė, S. (2017). The research on the width of the closed-circuit squareshaped embroidery element. Materials Science (Medžiagotyra), 23(2), 187-190.
  • [8] Bailie, B. D. (2008). Adjustable embroidery design system and method. US Patent 7,457,683, 2008 [Online]. Available from: https://www.google.com/patents/US7457683.
  • [9] Angelova, R. A., Sofronova, D., Nikolova, V. (2016). A case study on the defects in industrial manufacturing of embroidered textiles. Journal of Multidisciplinary Engineering Science and Technology, 3(12), 2458-9403.
  • [10] Radavičienė, S., Jucienė, M. (2010). Investigation of mechanical properties of embroidery threads. 5th International Textile, Clothing & Design Conference, Zagreb, 3–6 October, (pp. 494-499).
  • [11] Post, E. R., Orth, M., Russo, P. R., Gershenfeld, N. (2000). E-broidery: design and fabrication of textile-based computing. IBM Systems Journal, 39, 840-860.
  • [12] Shih, C. -Y., Jeffery Kuo, C. -F., Cheng, J. -H. (2016). A study of automated color, shape and texture analysis of Tatami embroidery fabrics. Textile Research Journal, 86(17), 1791-1802.
  • [13] Daukantienė, V., Laurinavičiūtė, I. (2013). The synergism of design and technology for the optimization of embroidery motifs in clothing. International Journal of Clothing Science and Technology, 25(5), 350-360.
  • [14] Zhang, S., Chauraya, A., Whittow, W., Seager, R., Acti, T., Dias, T., Vardaxoglou, Y. (2012). Embroidered wearable antennas using conductive threads with different stitch spacings. Final author version. Loughborough Antennas & Propagation Conference, 12-13 November 2012, Loughborough, UK, (pp. 1-6).
  • [15] Klevaitytė, R., Masteikaitė, V. (2008). Anisotropy of woven fabric deformation after stretching. Fibers & Textiles in Eastern Europe, 16(3), 52-56.
  • [16] Milašius, V. (2000). An integrated structure factor for woven fabrics. Part I: estimation of the weave. The Journal of the Textile Institute, Part 1, 91(2), 268–276. Part II: The fabric – firmness Factor. The Journal of the Textile Institute, Part 1, 91(91), 277-284.
  • [17] Radavičienė, S., Jucienė, M. (2013). Buckling of the woven fabric inside an embroidered element. Proceedings of the Estonian Academy of Sciences, 62(3), 187-192.
  • [18] Jeffery Kuo, C. -F., Juang, Y. (2016). A study on the recognition and classification of embroidered textile defects in manufacturing. Textile Research Journal, 86(4), 393-408.
  • [19] Shan, H. Y. J. S. C., Yong, C. J. (2003). An algorithm of finding path of embroider suture needle. Chinese Journal of Computers, 9, 1-25.
  • [20] Gan, L., Ly, N. G. (1995). A study if fabric deformation using nonlinear finite element. Textile Research Journal, 65(11), 185–196.
  • [21] Domskienė, J., Strazdienė, E. (2002). Shearing behavior of technical textiles. Material Science (Medžiagotyra), 8(4), 489-494.
  • [22] Domskienė, J., Strazdienė, E. (2005). Investigation of fabric shear behavior. Fibres and Textiles in Eastern Europe, 13(2), 26-30.
  • [23] Sacevičienė, V., Masteikaitė, V. (2003). Effects of coated fabrics structural characteristics on their tensile properties. Baltic Textile & Leather: International Conference, September 11-12, 2003, Kaunas-Vilnius, Lithuania: Proceedings. Kaunas: Technologija, ISBN 9955-09-479-6, (pp. 70-75).
  • [24] Urbelis, V., Petrauskas, A., Gulbinienė, A. (2008). Influence of hygrothermal treatment on the stress relaxation of clothing fabrics’ systems. Materials science (Medžiagotyra), 14(1), 69-74.
  • [25] Hosseinali, F. (2012). Investigation on the tensile properties of individual cotton. (Gossypium hirsutum L.) Fibers Texas Tech University, Farzad Hosseinali, August, 1-76.
  • [26] Pavlinič, D. Z., Geršak, J. (2003). Investigations of the relation between fabric mechanical properties and behaviour international. Journal of Clothing Science and Technology, 15(3/4), 231-240.
  • [27] Pocienė, R., Vitkauskas, A. (2007). Inverse stress relaxation in textile yarns after the blockage of viscoelastic recovery. Materials science (Medžiagotyra), 13(3), 240-244. ISSN 1392–1320.
  • [28] Rudolf, A., Geršak, J. (2007). Influence of sewing speed on the changes of mechanical properties of differently twisted and lubricated threads during the process of sewing. Tekstil, 56(5), 271-277.
  • [29] Rudolf, A., Geršak, J., Ujhelyiova, A., Smole, M. S. (2007). Study of PES sewing thread properties. Fibers and Polymers, 8(2), 212-217.
  • [30] Yamaha, K. (2009). “Embroidery data creation apparatus and storage medium storing embroider data creation program. Patent No. US2009299518. 24 p. [Online]. Available from: https www.google.com/patents/US20090299518.
  • [31] Sherien, N., Kateb, E. L. (2015). An investigation of factors affect ends-down rate in embroidery machine. The Journal of American Science, 11(6), 39-42. ISSN: 1545-1003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-463a2ab7-e553-46b3-a5a8-da343cdc9f62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.