PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Food Waste Management Using the Hermetia Illucens Insect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern agricultural biogas plants, the biowastes are being increasingly used for the biogas production. The food waste is also widely used in larvae breeding. This is an important because, based on biowaste, its proper management and green energy production is possible. This study aims to determine the biogas and methane efficiency of the Hermetia illucens larvae that were fed using the food waste. In the research on the biogas and methane efficiency, the Hermetia illucens larvae were used. The total solids (TS) of the substrate equals 30.35%, and the volatile solids (VS) content was 92.31% of TS. The larvae were fed only with the food waste of plant origin. The obtained substrates were homogeneous. The experiment was carried out under mesophilic anaerobic digestion conditions – 39°C in the 21-chamber biofermentor set in the Institute of Biosystems Engineering in Poznań University of Life Sciences. The anaerobic digestion process in the batch reactor ran correctly. Fermentation inhibition was not detected. The biogas efficiency for larvae amounted to 198.75 m3∙Mg-1 fresh mass (FM). On the other hand,the methane efficiency, amounted to 127.73 m3∙Mg-1, at the methane concentration of 64.27%. On the basis of the research, it was found that the larvae feeding on food waste can be used directly as anaerobic digestion in the bioconversion process.
Rocznik
Strony
212--216
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Institute of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
  • Institute of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
  • Institute of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
autor
  • Institute of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
Bibliografia
  • 1. Cerda A., Artola A., Font X., Barrena R., Gea T., Sánchez A., 2018. Composting of food wastes: Status and challenges. Bioresource Technology 248, Part A, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  • 2. Čičková H., Newton L., Lacy R.C., Kozánek M. 2015. The use of fly larvae for organic waste treatment. Waste Management 35, 68–80. https://doi.org/10.1016/j.wasman.2014.09.026
  • 3. Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., Cyplik P., Czekała W., Jóźwiakowski K. 2016. Methane fermentation of the maize straw silage under mesoand thermophilic conditions. Energy 115(2), 1495–1502. https://doi.org/10.1016/j.energy.2016.06.070
  • 4. Czekała W., Smurzyńska A., Cieślik M., Boniecki P., Kozłowski K. 2016. Biogas efficiency of selected fresh fruit covered by the Russian embargo. Energy And Clean Technologies Conference Proceedings, SGEM 2016, VOL III: 227–233. doi:10.5593/sgem2016HB43
  • 5. Czekała W. Concept of IN-OIL project based on bioconversion of by-products from food processing industry. 2017. Journal of Ecological Engineering 18(5), 180–185. DOI: https://doi.org/10.12911/22998993/76211
  • 6. Czekała W., Dach J., Przybył J., Mazurkiewicz J., Janczak D., Lewicki A., Smurzyńska A., Kozłowsk K. 2018. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant. E3S Web of Conferences 30, 02001 (2018) Water, Wastewater and Energy in Smart Cities. https://doi.org/10.1051/e3sconf/20183002001
  • 7. Czekała W. 2019. Biogas Production from Raw Digestate and its Fraction. Journal of Ecological Engineering20(6), 97–102. https://doi.org/10.12911/22998993/108653
  • 8. Czekała W., Lewicki A., Pochwatka P., Czekała A., Wojcieszak D., Jóźwiakowski K., Waliszewska H. 2020. Digestate management in polish farms as an element of the nutrient cycle. Journal of Cleaner Production 242, 118454. https://doi.org/10.1016/j.jclepro.2019.118454
  • 9. Diener S., Studt Solano N.M., Gutiérrez F.R., Zurbrügg C., TocknerK. 2011. Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste and Biomass Valorization 2, 357–363. https://doi.org/10.1007/s12649–011–9079–1
  • 10. Ferronato N., Torretta V. 2019. Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health 16(6), 1–28. doi: 10.3390/ijerph16061060.
  • 11. Filho W.L., Kovaleva M. 2015. Food Waste and Sustainable Food Waste Management in the Baltic Sea Region. Springer International Publishing Switzerland 2015. Print ISBN
  • 12. 978–3-319–10905–3. https://doi.org/10.1007/978–3-319–10906–0
  • 13. Janczak D.,Kozłowski., Zbytek Z., Cieślik M., Bugała A., Czekała A. 2016. Energetic Efficiency of the Vegetable Waste Used as Substrate for Biogas Production. 2nd international conference on chemical materials and process (ICCMP 2016); volume 64. doi: 10.1051/matecconf/20166406002
  • 14. Kierończyk B., Sypniewski J., Rawski M., Czekała W., Świątkiewicz S., Józefiak D. From waste to sustainable feed material: the effect of Hermetia illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Annals of Animal Science. DOI: 10.2478/aoas-2019–0066. Ahead of Print
  • 15. Kiran E.U., Trzcinski A.P., Ng W.J., Liu Y. 2014. Bioconversion of food waste to energy: A review. Fuel 134, 389–399. https://doi.org/10.1016/j.fuel.2014.05.074
  • 16. Koryś K.A., Latawiec A.E., Grotkiewicz K., Kuboń M. 2019. The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability 11, 6515; doi:10.3390/su11226515
  • 17. Kozłowski K., Pietrzykowski M., Czekała W., Dach J., Kowalczyk-Juśko A., Jóźwiakowski K., Brzoski M. 2019. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy 183, 15, 1023–1031. https://doi.org/10.1016/j.energy.2019.06.179
  • 18. LuJ., Muhmood A., Czekała W., Mazurkiewicz J., Dach J., Dong R. 2019. Untargeted Metabolite Profiling for Screening Bioactive Compounds in Digestate of Manure under Anaerobic Digestion. Water 11, 2420; https://doi.org/10.3390/w11112420
  • 19. Mazurkiewicz J., Marczuk A., Pochwatka P., Kujawa S. 2019. Maize Straw as a Valuable Energetic Material for Biogas Plant Feeding. Materials 12, 3848; doi: 10.3390/ma12233848
  • 20. Moustakas K., Loizidou M. 2018. Sustainable waste management. Environmental Science and Pollution Research 25, 35761–35763. https://doi.org/10.1007/s11356–018–3548-z
  • 21. Mustafa M.Y., Calay R.K., Román E. 2016. Biogas from Organic Waste – A Case Study. Procedia Engineering 146, 310–317. https://doi.org/10.1016/j.proeng.2016.06.397
  • 22. Manju Soniya S., Senophiyah-Mary J. 2020. An Experimental Study on the Generation of Biogas Using Food Waste and Water Hyacinth. In: Ghosh S. (eds) Energy Recovery Processes from Wastes. Springer, Singapore.
  • 23. Nalepa, K., Neugebauer, M., Sołowiej, P. 2018. Dedicated control and measurement system for bioreactors to study the composting process. E3S Web Conf., Volume 132. https://doi.org/10.1051/e3sconf/201913201018
  • 24. Obidziński, S., Dożyńska, M., Kowczyk-Sadowy, M., Jadwisienczak, K., Sobczak, P. 2019. Densification and fuelproperties of onionhusks. Energies 12, 4687. doi:10.3390/en12244687
  • 25. Piotrowska-Cyplik A., Chrzanowski Ł., Cyplik P., Dach J., Olejnik A., Staninska J., Czarny J.,. Lewicki A, Marecik R., Powierska-Czarny J. 2013. Composting of oiled bleaching earth: Fatty acids degradation, phytotoxicity and mutagenicity changes. International Biodeterioration & Biodegradation 78, 49–57.
  • 26. Robles-Aguilar A.A., Temperton V.M., Jablonowski N.D. 2019. Maize Silage Digestate Application Affecting Germination and Early Growth of Maize Modulated by Soil Type. Agronomy, 9(8), 473; https://doi.org/10.3390/agronomy9080473.
  • 27. Wandera S. M., Qiao Wei, Algapani D. E., Shaojie Bi, Dongmin Yin, Xiangyang Qi, Yueling Liu, Dach J., Dong R. 2018. Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renewable Energy 116 (A), 720–727.
  • 28. Wolna-Maruwka A., Dach J. 2009. Effect of Type and Proportion of Different Structure-Creating Additions on the Inactivation Rate of Pathogenic Bacteria in Sewage Sludge Composting in a Cybernetic Bioreactor. Archives of Environmental Protection 35 (3), 87–100.
  • 29. Żukowska, G.Z., Mazurkiewicz, J., Myszura, M., Czekała, W. 2019. Heat Energy and Gas Emissions during Composting of Sewage Sludge. Energies, MDPI, 12(24):4782; DOI: 10.3390/ en12244782
Uwagi
Błędna numeracja w bibliografii (poz. 12).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46392a6d-a6bd-4f9f-88ff-8c7e3afc191f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.