Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Common analytical assessment methods for concrete dams are unlikely to predict material fracture in the dam body because of the assumption of rigid body behavior and uniform- or linear stress distribution along a predetermined failure surface. Hence, probabilistic non-linear finite element analysis, calibrated from scale model tests, was implemented in this study to investigate the impact of concrete material parameters (modulus of elasticity, tensile strength, compressive strength, fracture energy) on the ultimate capacity of scaled model dams. The investigated dam section has two types of large asperities, located near the downstream and/or upstream end of the rock-concrete interface. These large-scale asperities significantly increased the interface roughness. Post-processing of the numerical simulations showed interlocking between the buttress and the downstream asperity leading to fracture of the buttress with the capacity being determined mainly by the tensile strength of the buttress material. The capacity of a model with an asperity near the upstream side, with lower inclination, was less dependent on the material parameters of the buttress as failure occurred by sliding along the interface, even with inferior material parameters. Results of this study show that material parameters of the concrete in a dam body can govern the load capacity of the dam granted that significant geometrical variations in the rock-concrete interface exists. The material parameters of the dam body and their impact on the capacity with respect to the failure mechanism that developed for some of the studied models are not commonly considered to be decisive for the load capacity. Also, no analytical assessment method for this type of failure exists. This implies that common assessment methods may misjudge the capacity and important parameters for certain failure types that may develop in dams.
Czasopismo
Rocznik
Tom
Strony
art. no. e109, 2023
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Laboratorievägen 14, 971 87 Lulea, Sweden
autor
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Laboratorievägen 14, 971 87 Lulea, Sweden
autor
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Laboratorievägen 14, 971 87 Lulea, Sweden
autor
- Norwegian University of Science and Technology, Trondheim, Norway
- SINTEF Narvik, Narvik, Norway
autor
- Division of Soil- and Rock Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
- AFRY, Stockholm, Sweden
autor
- Division of Soil- and Rock Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
autor
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Laboratorievägen 14, 971 87 Lulea, Sweden
Bibliografia
- 1. USACE. Gravity dam design. US Army Corps of Engineers; 1995.
- 2. CFGB. Small dams-Guidelines for Design, Construction and Monitoring. French Committee on Large Dams; 2002.
- 3. CDA. Dam Safety Guidelines 2007. Canadian Dam Association; 2013.
- 4. ANCOLD. Guidelines on design criteria for concrete gravity dams. Australian National Committee on Large Dams; 1991.
- 5. IS. Criteria for design of solid gravity dams. IS: 6512-2003. 2003. Report No.: IS 6512.
- 6. NVE. Retningslinjer for betongdammer til § 4.8 i forskrift om sikkerhet og tilsyn med vassdragsanlegg. Norges vassdrags ogenergidirektorat, Directorate NWRaE; 2005. (in Norwegian).
- 7. FERC. Engineering Guidelines for the Evaluation of Hydropower Projects: 3 Federal Energy Regulatory Commission; 2016.
- 8. Patton FD. Multiple modes of shear failure in rock. Proceedings of the 1st international Congress of Rock Mechanics: International Society for Rock Mechanics; 1966.
- 9. Grasselli G. Shear strength of rock joints based on quantified surface description. Lausanne: École polytechnique fédérale de Lausanne; 2001.
- 10. Asadi MS, Rasouli V, Barla G. A laboratory shear cell used for simulation of shear strength and asperity degradation of rough rock fractures. Rock Mech Rock Eng. 2013;46(4):683-99.
- 11. Gravel C, Moradian OZ, Fathi A, Ballivy G, Quirion M. In Situ Shear Testing of Simulated Dam Concrete-Rock Interfaces. 2015.
- 12. Ladanyi B, Archambault G. Simulation of shear behavior of a jointed rock mass. Proceedings of the 11th Symposium on Rock Mechanics. 1969;1.
- 13. Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock Mech. 1977;10(1):1-54.
- 14. Grasselli G. Manuel rocha medal recipient shear strength of rock joints based on quantified surface description. Rock Mech Rock Eng. 2006;39(4):295.
- 15. Johansson F, Stille H. A conceptual model for the peak shear strength of fresh and unweathered rock joints. Int J Rock Mech Min Sci. 2014;69:31-8.
- 16. Zhang X, Jiang Q, Chen N, Wei W, Feng X. Laboratory investigation on shear behavior of rock joints and a new peak shear strength criterion. Rock Mech Rock Eng. 2016;49(9):3495-512.
- 17. Ríos-Bayona F, Johansson F, Mas-Ivars D. Prediction of peak shear strength of natural, unfilled rock joints accounting for matedness based on measured aperture. Rock Mech Rock Eng. 2021;54(3):1533-50.
- 18. Chen Y, Lin H, Li S, Cao R, Yong W, Wang Y, et al. Shear expression derivation and parameter evaluation of Hoek-Brown criterion. Archiv Civil Mech Eng. 2022;22(2):77.
- 19. Sas G, Popescu C, Bista D, Seger A, Arntsen B, Johansson F, et al. Influence of large-scale asperities on the shear strength of concrete-rock interface of small buttress dams. Eng Struct. 2021;245: 112952.
- 20. Hencher SR, Richards LR. Assessing the shear strength of rock discontinuities at laboratory and field scales. Rock Mech Rock Eng. 2015;48(3):883-905.
- 21. Johansson F. Shear Strength of Unfilled and Rough Rock Joints in Sliding Stability Analyses of Concrete Dams. Diva: Kungliga Tekniska Högskolan; 2009.
- 22. Liahagen SA. Stabilitet av betongdammer - Ruhetens pavirkning pa skjarkapasiteten mellom betong og berg: Norges teknisk-naturvitenskapelige universitet; 2012.
- 23. Bista D, Sas G, Johansson F, Lia L. Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load. J Rock Mech Geotech Eng. 2020;12(3):449-60.
- 24. Harris HG, Sabnis GM. Structural modelling and experimental techniques. 2nd ed. Boca Raton: CRC Press; 1999.
- 25. Barpi F, Valente S. Numerical simulation of prenotched gravity dam models. J Eng Mech. 2000;126(6):611-9.
- 26. Liu J, Feng X-T, Ding X-L, Zhang J, Yue D-M. Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling-Part I: physical model tests. Int J Rock Mech Min Sci. 2003;40(5):609-31.
- 27. Harris DW, Travers F. Investigation of the Failure Modes of Concrete Dams - Physical Model Tests. U.S. Department of the Interior Bureau of Reclamation; 2006. Contract No.: DSO-06-03.
- 28. Zhu HH, Yin J-H, Dong J-H, Zhang L. Physical modelling of sliding failure of concrete gravity dam under overloading condition. Geomechanics and Engineering. 2010;2:89-106.
- 29. Chen Y, Zhang L, Yang B, Dong J, Chen J. Geomechanical model test on dam stability and application to Jinping High arch dam. Int J Rock Mech Min Sci. 2015;76:1-9.
- 30. Madier D. Practical Finite Element Analysis - For Mechanical Engineers. 1st ed. Canada: FEA Academy; 2020.
- 31. Novák D, Teplý B, Keršner Z, Vořechovský M. Freet program documentation. Brno: Czech Republic; 2002.
- 32. Xia C-C, Tang Z-C, Xiao W-M, Song Y-L. new peak shear strength criterion of rock joints based on quantified surface description. Rock Mech Rock Eng. 2014;47(2):387-400.
- 33. Buckingham E. On physically similar systems; illustrations of the use of dimensional equations. Phys Rev. 1914;4(4):345-76.
- 34. European Committee for Standardization. EN 1992-1-1, Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. 2004.
- 35. Schneemayer A, Schranz C, Kolbitsch A, Tschegg EK. Fracture-mechanical properties of mortar-to-brick interfaces. J Mater Civ Eng. 2014;26(9):04014060.
- 36. Fédération internationale du béton F. fib Model Code for Concrete Structures 2010. Berlin, Germany; 2013.
- 37. Pan T, Linbings W, Tutumluer E. Experimental investigation of aggregate-mortar interface affecting the early fracture toughness of portland cement concrete. International Journal of Pavement Research and Technology. 2011;4:168.
- 38. Červenka V, Jendele L, Červenka J. Atena program documentation- Part 1. Prague: Czech Republic; 2020.
- 39. Vorechovsky M, editor Extension of sample size in Latin Hypercube Sampling with correlated variables. 4th International Workshop on Reliable Engineering Computing; 2010; Singapore2009.
- 40. Silvestri S, Gasparini G, Trombetti T, Ceccoli C, editors. Towards the identification of accurate probability distribution models for the compressive strength of concrete. The 14th World Conference on Earthquake Engineering, Beijing; 2008.
- 41. Westberg Wilde M, Johansson F. Probabilistic model code for concrete dams- Part I, Part II, Part III and example. Energiforsk. se; 2016. Contract No.: 2016:292.
- 42. Nematzadeh M, Naghipour M. Compressive strength and modulus of elasticity of freshly compressed concrete. Constr Build Mater. 2012;34:476-85.
- 43. Strauss A, Hoffmann S, Wan-Wendner R, Bergmeister K. Structural assessment and reliability analysis for existing engineering structures, applications for real structures. Struct Infrastruct Eng. 2009;5:277-86.
- 44. Havlásek P, Pukl R. Sara program documentation. Prague: Czech Republic; 2017.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4637aed6-4b4a-4ebf-bc02-a275ee7879f3