PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Accuracy and durability increasing of the body level control systems in the immobile state of the vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pneumatic suspension is increasingly used in many cars. Control of a car body level is the main function of the pneumatic suspension. The experimental determination of the pneumatic spring characteristics suitable for the design and modeling of the car level control system is presented. The characteristics of the pneumatic spring are determined, that determine the quality of the control system. The effect of temperature changes inside the pneumatic spring is experimentally determined due to heat exchange on air pressure and vertical force during alignment of the car body. In addition, through modeling is evaluated by changing the level of the car body due to the impact of heat transfer. An original method of controlling the lifting and lowering of the vehicle body is proposed. The method is based on the energy balance and is the basis for reducing the number of strokes of the electropneumatic valve. The change in the level of the body due to the temperature effect is leveled due to the indirect consideration of this effect using the pressure sensor in the cylinder.
Czasopismo
Rocznik
Strony
art. no 2022310
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Automobiles, Kharkiv National Automobile and Highway University, Ukraine
  • Department of Automobiles, Kharkiv National Automobile and Highway University, Ukraine
  • Lublin University of Technology, Poland
  • V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
autor
  • Department of Sustainable Transport and Powertrains, Lublin University of Technology, Poland
Bibliografia
  • 1. Karimi Eskandary, Peyman Khajepour A, Wong, A, Ansari, Momtaj. Analysis and optimization of air suspension system with independent height and stiffness tuning. International Journal of Automotive Technology. 2016;17:807-816. https://doi.org/10.1007/s12239-016-0079-9.
  • 2. Systems and components for commercial vehicles. Product catalogue. https://www.wabcocustomercentre.com/catalog/docs/8150100033.pdf (date of access 29.08.2022).
  • 3. Systems and components for buses. https://www.wabcocustomercentre.com/catalog/docs/8150101563.pdf (date of access 29.08.2022).
  • 4. Electronically Controlled Air Suspension (ECAS) for Buses. Maintenance Manual. https://www.zf.com/products/en/cv/footer/download s/downloads.html (date of access 29.08.2022).
  • 5. ECAS in the towing vehicle. System description and installation instructions. 2007. https://www.wabcocustomercentre.com/catalog/docs/8150100273.pdf (date of access 29.08.2022).
  • 6. Electronically controlled air suspension (ecas) for trucks. https://www.wabcocustomercentre.com/catalog/docs/mm36_web.pdf (date of access 29.08.2022).
  • 7. Vibracoustic CV. Air Springs V 1 D 28 B-2 Product information. http://www.mmdavto.com/image.php?in=V1D28B2. jpg&s=800 (date of access 29.08.2022).
  • 8. Air Bellow Spring -WABCO Catalog. Part Number: 9518147210.https://www.wabcocustomercentre.com/catalog/docs/9518147210_005_dascheck_-2_page-1-notset.tif.pdf (date of access 29.08.2022).
  • 9. Firestone. AIRIDE Design guide. https://www.valorx.com.tw/images/firestone/%E5%8F%83%E8%80%83%E8%B3%87%E6%96%99_% E8%A8%AD%E8%A8%88%E5%BB%BA%E8%A D%B0.pdf (date of access 29.08.2022).
  • 10. Lee SJ. Development and analysis of an air spring model. International Journal of Automotive Technology. 2010;11:471-479. https://doi.org/10.1007/s12239-010-0058-5.
  • 11. Sai Kausik Abburu. Modelling advanced air suspension with electronic level control in ADAMS/Car. University essay from KTH Royal Institute of Technology. 2020. https://kth.divaportal.org/smash/get/diva2:1527803/FULLTEXT01. pdf (date of access 29.08.2022).
  • 12. Air spring. CONTECH 81300K. http://concordshop.com/userdata/shop/product/81300k_water.jpg (date of access 29.08.2022).
  • 13. Load Cells and Force Sensors. H2F nickel plated alloy steel spoke type load cell (1T-50T). https://www.zemicusa.com/wpcontent/uploads/2018/10/69.1.pdf (date of access 29.08.2022).
  • 14. MPX5999D Integrated Silicon Pressure Sensor OnChip Signal Conditioned, Temperature Compensated and Calibrated. Freescale Semiconductor Document Number: MPX5999D. Data Sheet: Technical Data Rev. 7.01/2015. https://www.nxp.com/docs/en/datasheet/MPX5999D.pdf (date of access 29.08.2022).
  • 15. Sorli M, Gastaldi L, Codina E, Heras S. Dynamic analysis of pneumatic actuators. Simul. Pr. Theory. 1999;7:589-602. https://doi.org/10.1016/S0928- 4869(99)00012-9.
  • 16. Acarman T, Ozguner U, Hatipoglu C, Igusky A. Pneumatic brake system modeling for systems analysis. SAE Technical Paper 2000-01-3414, 2000, https://doi.org/10.4271/2000-01-3414.
  • 17. Satoshi Kumata, Kenta Narumi, Tomoharu Iida, Naoto Maruyama, Masaya Tanemura, Yuichi Chida. Control design for a pneumatic isolation table including different time delays dependent on control input polarity. 2017;50(1):6029-6034. https://doi.org/10.1016/j.ifacol.2017.08.1443.
  • 18. Bazhanova A, Nemchuk O, Lymarenko O, Piterska V, Sherstiuk O, Khamrai V. Diagnostics of stress and strained state of leaf springs of special purpose offroad vehicles. Diagnostyka. 2022;23(1):2022111. https://doi.org/10.29354/diag/147292.
  • 19. ISO 6358-1:2013. Pneumatic fluid power - determination of flow-rate characteristics of components using compressible fluids - Part 1: General rules and test methods for steady-state flow.
  • 20. Ehrl Thomas, Smith Rory, Stefan Kaczmarczyk. Key dynamic parameters that influence ride quality of passenger transportation systems. Transportation Systems in Buildings. 2017;1. https://doi.org/10.14234/tsib.v1i1.104.
  • 21. Vaičiūnas G, Steišūnas S, Bureika G. Specification of estimation of a passenger car ride smoothness under various exploitation conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23(4):719-725. http://doi.org/10.17531/ein.2021.4.14.
  • 22. ISO 18738-1, Measurement of ride quality, Part 1: Lifts/Elevators 2012.
  • 23. Bae I, Moon J, Seo J. Toward a comfortable driving experience for a self-driving shuttle bus. Electronics. 2019;8:943. https://doi.org/10.3390/electronics8090943.
  • 24. Bielaczyc P, Kozak M, Merkisz J. Effects of fuel properties on exhaust emissions from the latest lightduty DI diesel engine. SAE Technical Paper 2003-01-1882. 2003. https://doi.org/10.4271/2003-01-1882.
  • 25. Mamala J, Graba M, Bieniek A, Prażnowski K, Augustynowicz A, Śmieja M. Study of energy consumption of a hybrid vehicle in real-world conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): 636-645. http://doi.org/10.17531/ein.2021.4.6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4631f6d0-8480-4486-bc88-554101f28954
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.