Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper model of a vibrating system of two rotating, stressed to each other and periodically losing contact cylinders is presented. The model is described by two-degrees-of-freedom Hill's differential equations system, which was numerically solved. Spectra of the vibrations were analyzed in here.
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--13
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
- Research and Development Centre for the Graphic Arts (COBRPP) Miedziana 11, 00-958 Warsaw, Poland
autor
- Warsaw University of Technology, Department of Production Engineering Institute of Mechanics and Printing, Division of Graphic Arts Konwiktorska 2, 02-217 Warsaw, Poland
Bibliografia
- [1] S. Ziemba, Vibrations analysis, PWN, Warszawa, 1957 (in Po - lish)
- [2] S. S. Rao, Mechanical Vibrations, Pearson, New Jersey, 2004
- [3] V. V. Bolotin, The Dynamic Stability of Elastic Systems (San Francisco, Holden-Day, 1964)
- [4] Y. Pyryev, J. Krzyżkowski, Parametric vibrations in offset printing units, Theoretical & Applied Mechanics Letters, 2, [doi:10.1063/2.1204311], 2012, pp. 043011-1–043011-4
- [5] J. Welte et al., Parametric excitation in a two degree of freedom MEMS system, Shock and Vibration, 20, 2013, pp. 1113–1124
- [6] L. P˚ust, A. Tondl, Further application of parametric anti-resonance, Engineering mechanics, Vol. 18, 2011, No. 3/4, pp. 157–165
- [7] F. Dohnal, F. Verhulst, Averaging in vibration suppression by parametric stiffness excitation, Nonlinear Dynamic, 54, 2008, pp. 231–248
- [8] D. Lucora, M.S. Triantafyllou, Parametric study of a two degree-of-freedom cylinder subject to vortex-induced vibrations, J. of Fluids and Structures, 24, 2008, pp. 1284–1293
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46302732-6145-475d-ab8f-6bf8e125b040