PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformation-induced martensite in austenitic stainless steels: A review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent progress in the understanding of the deformation-induced martensitic transformation, the transformation-induced plasticity (TRIP) effect, and the reversion annealing in the metastable austenitic stainless steels are reviewed in the present work. For this purpose, the introduced methods for the measurement of martensite content are summarized. Moreover, the austenite stability as the key factor for controlling the austenite to martensite transformation is critically discussed. This is realized by analyzing the effects of chemical composition, initial grain size, applied strain, deformation temperature, strain rate, and deformation mode (stress state). For instance, the effect of initial grain size is found to be complicated, especially in the ultrafine grained (UFG) regime. Furthermore, it seems that there is a critical grain size for changing the trend of α′-martensite formation. Decreasing the deformation temperature motivates the formation of α′-martensite, but there is a critical temperature for achieving the maximum tensile ductility. Afterwards, the modeling techniques for the transformation kinetics and the contribution of deformation-induced martensitic transformation to the strengthening of material and also strength-ductility trade-off are critically surveyed. The processing of UFG microstructure during reversion annealing, the effects of the recrystallization of the retained austenite, the martensitic shear and diffusional reversion mechanisms, and the annealing-induced martensitic transformation are also summarized. Accordingly, this overview presents the opportunities that the strain-induced martensitic transformation can offer for controlling the microstructure and mechanical properties of metastable austenitic stainless steels.
Rocznik
Strony
382--405
Opis fizyczny
Bibliogr. 238 poz., rys., wykr.
Twórcy
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
Bibliografia
  • [1] Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;65:39–104.
  • [2] Järvenpää A, Jaskari M, Kisko A, Karjalainen P. Processing and properties of reversion-treated austenitic stainless steels. Metals. 2020;10:281.
  • [3] Padilha AF, Plaut RL, Rios PR. Annealing of cold-worked austenitic stainless steels. ISIJ Int. 2003;43:135–43.
  • [4] Karjalainen LP, Taulavuori T, Sellman M, Kyröläinen A. Some strengthening methods for austenitic stainless steels. Steel Res Int. 2008;79:404–12.
  • [5] Sohrabi MJ, Mirzadeh H, Dehghanian C. Significance of martensite reversion and austenite stability on the mechanical properties and TRIP effect of austenitic stainless steels. J Mater Eng Perform. 2020;29:3233–42.
  • [6] Maki T. Stainless steel: progress in thermomechanical treatment. Curr Opin Solid State Mater Sci. 1997;2:290–5.
  • [7] Li J, Zhou Z, Wang S, Mao Q, Fang C, Li Y, Wang G, Kang J, Zhu X. Deformation mechanisms and enhanced mechanical properties of 304L stainless steel at liquid nitrogen temperature. Mater Sci Eng A. 2020;798:140133.
  • [8] Sharifian K, Mirzadeh H, Kheiri S, Naghizadeh M. Two-step annealing treatment for grain refinement of cold-worked AISI 316L stainless steel. Int J Mater Res. 2020;111:8.
  • [9] Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–74.
  • [10] Qu S, Huang CX, Gao YL, Yang G, Wu SD, Zang QS, Zhang ZF. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing. Mater Sci Eng A. 2008;475:207–16.
  • [11] Mine Y, Horita Z, Murakami Y. Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater. 2009;57:2993–3002.
  • [12] Scheriau S, Zhang Z, Kleber S, Pippan R. Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion. Mater Sci Eng A. 2011;528:2776–86.
  • [13] Gubicza J, El-Tahawy M, Huang Y, Choi H, Choe H, Lábár JL, Langdon TG. Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Mater Sci Eng A. 2016;657:215–23.
  • [14] Nakao Y, Miura H. Nano-grain evolution in austenitic stainless steel during multi-directional forging. Mater Sci Eng A. 2011;528:1310–7.
  • [15] Tikhonova M, Belyakov A, Kaibyshev R. Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging. Mater Sci Eng A. 2013;564:413–22.
  • [16] Ruppert M, Freund LP, Wenzl T, Höppel HW, Göken M. Ultrafine-grained austenitic stainless steels X4CrNi18-12 and X8CrMnNi19-6-3 produced by accumulative roll bonding. Metals. 2015;5:730–42.
  • [17] Jafarian H, Borhani E, Shibata A, Tsuji N. Variant selection of martensite transformation from ultrafine-grained austenite in Fe–Ni–C alloy. J Alloy Compd. 2013;577:S668–S67272.
  • [18] Mohammad Nejad Fard N, Mirzadeh H, Rezayat M, Cabrera JM (2017) Accumulative roll bonding of aluminum/stainless steel sheets. J Ultrafine Grained Nanostructured Mater 50:1–5.
  • [19] Cao R, Zhao XK, Ding Y, Zhang XB, Jiang XX, Yan YJ, Chen JH. Effects of the rolling temperature on microstructure and mechanical properties of 2Cr13/316L laminated composites prepared by accumulative roll-bonding (ARB). Mater Charact. 2018;139:153–64.
  • [20] Tsuchiyama T, Uchida H, Kataoka K, Takaki S. Fabrication of fine-grained high nitrogen austenitic steels through mechanical alloying treatment. ISIJ Int. 2002;42:1438–43.
  • [21] Cisneros MM, Lopez HF, Mancha H, Rincon E, Vazquez D, Perez MJ, De La Torre SD. Processing of nanostructured high nitrogen stainless steel by mechanical alloying. Metall Mater Trans A. 2005;36:1309–16.
  • [22] Amini R, Hadianfard MJ, Salahinejad E, Marasi M, Sritharan T. Microstructural phase evaluation of high-nitrogen Fe–Cr–Mn alloy powders synthesized by the mechanical alloying process. J Mater Sci. 2009;44:136–48.
  • [23] Haghir T, Abbasi MH, Golozar MA, Panjepour M. Investigation of α to γ transformation in the production of a nanostructured high-nitrogen austenitic stainless steel powder via mechanical alloying. Mater Sci Eng A. 2009;507:144–8.
  • [24] Chen YC, Fujii H, Tsumura T, Kitagawa Y, Nakata K, Ikeuchi K, Matsubayashi K, Michishita Y, Fujiya Y, Katoh J. Friction stir processing of 316L stainless steel plate. Sci Technol Weld Join. 2009;14:197–201.
  • [25] Mehranfar M, Dehghani K. Producing nanostructured superaustenitic steels by friction stir processing. Mater Sci Eng A. 2011;528:3404–8.
  • [26] Selvam K, Prakash A, Grewal HS, Arora HS. Structural refinement in austenitic stainless steel by submerged friction stir processing. Mater Chem Phys. 2017;197:200–7.
  • [27] Cho SH, Yoo YC. Hot rolling simulations of austenitic stainless steel. J Mater Sci. 2001;36:4267–72.
  • [28] Souza RC, Silva ES, Jorge AM Jr, Cabrera JM, Balancin O. Dynamic recovery and dynamic recrystallization competition on a Nb-and N-bearing austenitic stainless steel biomaterial: influence of strain rate and temperature. Mater Sci Eng A. 2013;582:96–107.
  • [29] Zhang XJ, Hodgson PD, Thomson PF. The effect of throughthickness strain distribution on the static recrystallization of hot rolled austenitic stainless steel strip. J Mater Process Technol. 1996;60:615–9.
  • [30] Dehghan-Manshadi A, Barnett MR, Hodgson PD. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation. Mater Sci Eng A. 2008;485:664–72.
  • [31] Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels. Prog Mater Sci. 2018;94:174–242.
  • [32] Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Mater Sci Eng A. 1998;255:139–47.
  • [33] Mandal S, Bhaduri AK, Sarma VS. A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel. Metall Mater Trans A. 2011;42:1062–72.
  • [34] Salvatori I, Inoue T, Nagai K. Ultrafine grain structure through dynamic recrystallization for Type 304 stainless steel. ISIJ Int. 2002;42:744–50.
  • [35] McQueen HJ, Ryan ND, Evangelista E. Dynamic recrystallization in austenitic stainless steels. Mater Sci Forum. 1993;113:435–40.
  • [36] Stewart GR, Jonas JJ, Montheillet F. Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel. ISIJ Int. 2004;44:1581–9.
  • [37] Mirzadeh H, Cabrera JM, Najafizadeh A, Calvillo PR. EBSD study of a hot deformed austenitic stainless steel. Mater Sci Eng A. 2012;538:236–45.
  • [38] Barraclough DR, Sellars CM. Static recrystallization and restoration after hot deformation of type 304 stainless steel. Metal Sci. 1979;13:257–68.
  • [39] Humphreys JF, Rohrer GS, Rollett AD. Recrystallization and related annealing phenomena. 3rd ed. Amsterdam: Elsevier; 2017.
  • [40] Tomimura K, Takaki S, Tanimoto S, Tokunaga Y. Optima chemical composition in Fe-Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ Int. 1991;31:721–7.
  • [41] Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 1991;31:1431–7.
  • [42] Takaki S, Tomimura K, Ueda S. Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel. ISIJ Int. 1994;34:522–7.
  • [43] Mangonon PL, Thomas G. Structure and properties of thermal-mechanically treated 304 stainless steel. Metall Trans. 1970;1:1587–94.
  • [44] Smith H, West DRF. The reversion of martensite to austenite in certain stainless steels. J Mater Sci. 1973;8:1413–20.
  • [45] Guy KB, Butler EP, West DRF. Reversion of bcc α′ martensite in Fe–Cr–Ni austenitic stainless steels. Metal Sci. 1983;17:167–76.
  • [46] Ravi Kumar B, Singh R, Mahato B, De PK, Bandyopadhyay NR, Bhattacharya DK (2005) Effect of texture on corrosion behavior of AISI 304L stainless steel. Mater Charact 54:141–147.
  • [47] Hamada AS, Karjalainen LP, Somani MC. Electrochemical corrosion behaviour of a novel submicron-grained austenitic stainless steel in an acidic NaCl solution. Mater Sci Eng A. 2006;431:211–7.
  • [48] Ferreira Gomes de Abreu H, de Carvalho SS, de Lima Neto P, dos Santos RP, Nogueira Freire V, de Oliveira Silva PM, Souto Maior Tavares S (2007) Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance. Mater Res 10:359–366.
  • [49] Solomon N, Solomon I. Effect of deformation-induced phase transformation on AISI 316 stainless steel corrosion resistance. Eng Fail Anal. 2017;79:865–75.
  • [50] Tavares SSM, Da Silva MR, Neto JM, Miraglia S, Fruchart D. Ferromagnetic properties of cold rolled AISI 304L steel. J Magn Magn Mater. 2002;242:1391–4.
  • [51] Mészáros I, Prohászka J. Magnetic investigation of the effect of α′-martensite on the properties of austenitic stainless steel. J Mater Process Technol. 2005;161:162–8.
  • [52] Souza Filho IR, Sandim MJR, Cohen R, Nagamine LCCM, Hoffmann J, Bolmaro RE, Sandim HRZ. Effects of straininduced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel. J Magn Magn Mater. 2016;419:156–65.
  • [53] Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:140023.
  • [54] Nasiri Z, Ghaemifar S, Naghizadeh M, Mirzadeh H. Thermal mechanisms of grain refinement in steels: a review. Metals Mater Int. 2020. https ://doi.org/10.1007/s1254 0-020-00700-1(inpre ss).
  • [55] Liu J, Jin Y, Fang X, Chen C, Feng Q, Liu X, Chen Y, Suo T, Zhao F, Huang T, Wang H, Wang X, Fang Y, Wei Y, Meng L, Lu J, Yang W. Dislocation strengthening without ductility trade-off in metastable austenitic steels. Sci Rep. 2016;6:35345.
  • [56] Zergani A, Mirzadeh H, Mahmudi R. Unraveling the effect of deformation temperature on the mechanical behavior and transformation-induced plasticity of the SUS304L stainless steel. Steel Res Int. 2020;91:2000114.
  • [57] Zergani A, Mirzadeh H, Mahmudi R. Evolutions of mechanical properties of AISI 304L stainless steel under shear loading. Mater Sci Eng A. 2020;791:139667.
  • [58] Gao S, Bai Y, Zheng R, Tian Y, Mao W, Shibata A, Tsuji N. Mechanism of huge Lüders-type deformation in ultrafine grained austenitic stainless steel. Scripta Mater. 2019;159:28–322.
  • [59] Ueji R, Tsuji N, Minamino Y, Koizumi Y. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater. 2002;50:4177–89.
  • [60] Najafi M, Mirzadeh H, Alibeyki M. Toward unraveling the mechanisms responsible for the formation of ultrafine grained microstructure during tempering of cold rolled martensite. Mater Sci Eng A. 2016;670:252–5.
  • [61] Kalhor A, Soleimani M, Mirzadeh H, Uthaisangsuk V. A review of recent progress in mechanical and corrosion properties of dual phase steels. Arch Civil Mech Eng. 2020;20:85.
  • [62] Azizi-Alizamini H, Militzer M, Poole WJ. Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int. 2011;51:958–64.
  • [63] Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing. Mater Chem Phys. 2019;230:1–8.
  • [64] Nakada N, Arakawa Y, Park KS, Tsuchiyama T, Takaki S. Dual phase structure formed by partial reversion of cold-deformed martensite. Mater Sci Eng A. 2012;553:128–33.
  • [65] Deng Y, Di H, Misra RDK. On significance of initial microstructure in governing mechanical behavior and fracture of dual-phase steels. J Iron Steel Res Int. 2018;25:932–42.
  • [66] Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Metal Sci. 1982;16:245–53.
  • [67] Patel JR, Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953;1:531–8.
  • [68] Bolling GF, Richman RH. The plastic deformation-transformation of paramagnetic fcc Fe–Ni–C alloys. Acta Metall. 1970;18:673–81.
  • [69] Olson GB, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Metals. 1972;28:107–18.
  • [70] Das A, Sivaprasad S, Ghosh M, Chakraborti PC, Tarafder S. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Mater Sci Eng A. 2008;486:283–6.
  • [71] Venables JA. The martensite transformation in stainless steel. Philos Mag J Theor Exp Appl Phys. 1962;7:35–44.
  • [72] Mangonon PL, Thomas G. The martensite phases in 304 stainless steel. Metall Trans. 1970;1:1577–86.
  • [73] Suzuki T, Kojima H, Suzuki K, Hashimoto T, Ichihara M. An experimental study of the martensite nucleation and growth in 18/8 stainless steel. Acta Metall. 1977;25:1151–62.
  • [74] De AK, Speer JG, Matlock DK, Murdock DC, Mataya MC, Comstock RJ. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall Mater Trans A. 2006;37:1875–86.
  • [75] Shirdel M, Mirzadeh H, Parsa MH. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: mechanisms, microstructures, mechanical properties, and TRIP effect. Mater Charact. 2015;103:150–61.
  • [76] Shen YF, Li XX, Sun X, Wang YD, Zuo L. Twinning and martensite in a 304 austenitic stainless steel. Mater Sci Eng A. 2012;552:514–22.
  • [77] Sohrabi MJ, Mirzadeh H, Dehghanian C. Thermodynamics basis of saturation of martensite content during reversion annealing of cold rolled metastable austenitic steel. Vacuum. 2020;174:109220.
  • [78] De AK, Murdock DC, Mataya MC, Speer JG, Matlock DK. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Mater. 2004;50(12):1445–9.
  • [79] Moser NH, Gross TS, Korkolis YP. Martensite formation in conventional and isothermal tension of 304 austenitic stainless steel measured by X-ray diffraction. Metall Mater Trans A. 2014;45:4891–6.
  • [80] Gauss C, Souza Filho IR, Sandim MJR, Suzuki PA, Ramirez AJ, Sandim HRZ. In situ synchrotron X-ray evaluation of straininduced martensite in AISI 201 austenitic stainless steel during tensile testing. Mater Sci Eng A. 2016;651:507–16.
  • [81] Solomon N, Solomon I. Deformation induced martensite in AISI 316 stainless steel. Rev de Metal. 2010;46:121–8.
  • [82] Haušild P, Davydov V, Drahokoupil J, Landa M, Pilvin P. Characterization of strain-induced martensitic transformation in a metastable austenitic stainless steel. Mater Des. 2010;31:1821–7.
  • [83] Polatidis E, Morgano M, Malamud F, Bacak M, Panzner T, Van Swygenhoven H, Strobl M. Neutron diffraction and diffraction contrast imaging for mapping the TRIP effect under load path change. Materials. 2020;13:1450.
  • [84] Souza Filho IR, Zilnyk KD, Sandim MJR, Bolmaro RE, Sandim HRZ. Strain partitioning and texture evolution during cold rolling of AISI 201 austenitic stainless steel. Mater Sci Eng A. 2017;702:161–72.
  • [85] Kisko A, Misra RDK, Talonen J, Karjalainen LP. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Mater Sci Eng A. 2013;578:408–16.
  • [86] Al-Fadhalah K, Aleem M. Microstructure refinement and mechanical properties of 304 stainless steel by repetitive thermomechanical processing. Metall Mater Trans A. 2018;49:1121–39.
  • [87] Li J, Fang C, Liu Y, Huang Z, Wang S, Mao Q, Li Y. Deformation mechanisms of 304L stainless steel with heterogeneous lamella structure. Mater Sci Eng A. 2019;742:409–13.
  • [88] Gauzzi F, Verdini B. Martensitic transformations in Fe–Mn–C system. Metall Italy. 1979;71:515–30.
  • [89] Shirdel M, Mirzadeh H, Parsa MH. Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches. Mater Sci Eng A. 2015;624:256–60.
  • [90] Tavares SSM, Neto JM, Da Silva MR, Vasconcelos IF, de Abreu HFG. Magnetic properties and α′ martensite quantification in an AISI 301LN stainless steel deformed by cold rolling. Mater Charact. 2008;59:901–4.
  • [91] Lois A, Ruch M. Assessment of martensite content in austenitic stainless steel specimens by eddy current testing. Insight Non Destr Test Cond Monit. 2006;48:26–9.
  • [92] Beese AM, Mohr D. Identification of the direction-dependency of the martensitic transformation in stainless steel using in situ magnetic permeability measurements. Exp Mech. 2011;51:667–76.
  • [93] Mumtaz K, Takahashi S, Echigoya J, Zhang LF, Kamada Y, Sato M. Detection of martensite transformation in high temperature compressively deformed austenitic stainless steel by magnetic NDE technique. J Mater Sci. 2003;38:3037–50.
  • [94] O’sullivan D, Cotterell M, Meszaros I (2004) The characterisation of work-hardened austenitic stainless steel by NDT micromagnetic techniques. NDT E Int 37:265–269.
  • [95] Klyushnikov VA, Gonchar AV, Mishakin VV, Kurashkin KV. Measurement of the strain induced α’-martensite content by eddy current method in the presence of elastic stresses of austenitic stainless steels. J Phys Conf Ser. 2020;1431:012028.
  • [96] Talonen J, Aspegren P, Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Mater Sci Technol. 2004;20:1506–12.
  • [97] Mukhopadhyay CK, Jayakumar T, Kasiviswanathan K, Raj B. Study of ageing-induced α′-martensite formation in cold-worked AISI type 304 stainless steel using an acoustic emission technique. J Mater Sci. 1995;30:4556–600.
  • [98] Celada-Casero C, Kooiker H, Groen M, Post J, San-Martin D. In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements. Metals. 2017;7:271.
  • [99] Haušild P, Nohava J, Pilvin P. Characterisation of strain-induced martensite in a metastable austenitic stainless steel by nanoindentation. Strain. 2011;47:129–33.
  • [100] Gauzzi F, Verdini B, Principi G, Badan B. The martensitic transformation in cold-worked Fe-Mn alloys studied by Mössbauer spectroscopy. J Mater Sci. 1983;18:3661–700.
  • [101] Xiong Y, Yue Y, Lu Y, He T, Fan M, Ren F, Cao W. Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel. Mater Sci Eng A. 2018;709:270–6.
  • [102] Hedström P, Lindgren LE, Almer J, Lienert U, Bernier J, Terner M, Odén M. Load partitioning and strain-induced martensite formation during tensile loading of a metastable austenitic stainless steel. Metall Mater Trans A. 2009;40:1039–48.
  • [103] Fultz B, Howe J. Transmission electron microscopy and diffractometry of materials. 3rd ed. Berlin: Springer; 2008.
  • [104] Naghizadeh M, Mirzadeh H. Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall Mater Trans A. 2016;47:4210–6.
  • [105] Etienne A, Radiguet B, Genevois C, Le Breton JM, Valiev R, Pareige P. Thermal stability of ultrafine-grained austenitic stainless steels. Mater Sci Eng A. 2010;527:5805–10.
  • [106] Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90–6.
  • [107] Naghizadeh M, Mirzadeh H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A. 2018;49:2248–56.
  • [108] Chang L, Gan D. The effects of grain boundary carbides on the low cycle fatigue properties of type 316 stainless steel. Mater Sci Eng. 1987;95:125–36.
  • [109] Mythili R, Saroja S, Vijayalakshmi M. Study of strain induced martensite formation in a Ti modified 316 stainless steel bellow by transmission electron microscopy. Trans Indian Inst Met. 2009;62:573–9.
  • [110] Zhang X, Tang J, Liu H, Gong J. Effects of pre-strain on sensitization and interganular corrosion for 304 stainless steel. Eng Fail Anal. 2019;106:104179.
  • [111] Xu DM, Li GQ, Wan XL, Misra RDK, Zhang XG, Zhang XG, Xu G, Wu KM. The effect of annealing on the microstructural evolution and mechanical properties in phase reversed 316LN austenitic stainless steel. Mater Sci Eng A. 2018;720:36–48.
  • [112] Al-Fadhalah KJ. Strain-induced martensite formation and recrystallization behavior in 304 stainless steel. J Mater Eng Perform. 2015;24(4):1697–709.
  • [113] Xu D, Wan X, Yu J, Xu G, Li G. Effect of cold deformation on] microstructures and mechanical properties of austenitic stainless steel. Metals. 2018;8:522.
  • [114] Amininejad A, Jamaati R, Hosseinipour SJ. Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Mater Sci Eng A. 2019;767:138433.
  • [115] Mallick P, Tewary NK, Ghosh SK, Chattopadhyay PP. Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel. Mater Charact. 2017;133:77–86.
  • [116] Biermann H, Solarek J, Weidner A. SEM investigation of high-alloyed austenitic stainless cast steels with varying austenite stability at room temperature and 100° C. Steel Res Int. 2012;83:512–20.
  • [117] Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagané. 1977;63:772–82.
  • [118] Matsuoka Y, Iwasaki T, Nakada N, Tsuchiyama T, Takaki S. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int. 2013;53:1224–300.
  • [119] Mirzadeh H, Najafizadeh A. Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel. Mater Charact. 2008;59:1650–4.
  • [120] Shrinivas V, Varma SK, Murr LE. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during roomtemperature rolling. Metall Mater Trans A. 1995;26:661–71.
  • [121] Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res Int. 2019;90:1900153.
  • [122] Lee CY, Yoo CS, Kermanpur A, Lee YK. The effects of multicyclic thermo-mechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel. J Alloy Compd. 2014;583:357–60.
  • [123] Jung YS, Lee YK, Matlock DK, Mataya MC. Effect of grain size on strain-induced martensitic transformation start temperature in an ultrafine grained metastable austenitic steel. Met Mater Int. 2011;17:553–6.
  • [124] Varma SK, Kalyanam J, Murr LE, Srinivas V. Effect of grain size on deformation-induced martensite formation in 304 and 316 stainless steels during room temperature tensile testing. J Mater Sci Lett. 1994;13:107–11.
  • [125] Hadji M, Badji R. Microstructure and mechanical properties of austenitic stainless steels after cold rolling. J Mater Eng Perform. 2002;11:145–51.
  • [126] Yoo CS, Park YM, Jung YS, Lee YK. Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel. Scripta Mater. 2008;59:71–4.
  • [127] Challa VSA, Wan XL, Somani MC, Karjalainen LP, Misra RDK. Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Mater Sci Eng A. 2014;613:60–70.
  • [128] Huang CX, Yang G, Wang C, Zhang ZF, Wu SD. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by equal-channel angular pressing. Metall Mater Trans A. 2011;42:2061–71.
  • [129] Angel T. Formation of martensite in austenitic stainless steels. J Iron Steel Inst. 1954;177:165–74.
  • [130] Spencer K, Véron M, Yu-Zhang K, Embury JD. The strain induced martensite transformation in austenitic stainless steels: Part 1–Influence of temperature and strain history. Mater Sci Technol. 2009;25:7–17.
  • [131] Tsuchida N, Morimoto Y, Tonan T, Shibata Y, Fukaura K, Ueji R. Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel. ISIJ Int. 2011;51:124–9.
  • [132] Naraghi R, Hedström P, Borgenstam A. Spontaneous and deformation-induced martensite in austenitic stainless steels with different stability. Steel Res Int. 2011;82:337–45.
  • [133] Hamada AS, Karjalainen LP, Misra RDK, Talonen J. Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels. Mater Sci Eng A. 2013;559:336–44.
  • [134] Zheng C, Yu W. Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel. Mater Sci Eng A. 2018;710:359–65.
  • [135] Xiong Y, He T, Lu Y, Ren F, Volinsky AA, Cao W. Tensile deformation temperature impact on microstructure and mechanical properties of AISI 316LN austenitic stainless steel. J Mater Eng Perform. 2018;27:1232–40.
  • [136] Hecker SS, Stout MG, Staudhammer KP, Smith JL. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I. Magn Meas Mech Behav Metall Trans A. 1982;13:619–26.
  • [137] Murr LE, Staudhammer KP, Hecker SS. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part II. Microstruct study Metall Trans A. 1982;13:627–35.
  • [138] Lichtenfeld JA, Mataya MC, Van Tyne CJ. Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel. Metall Mater Trans A. 2006;37:147–61.
  • [139] Huang GL, Matlock DK, Krauss G. Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet. Metall Trans A. 1989;20:1239–46.
  • [140] Talonen J, Hänninen H, Nenonen P, Pape G. Effect of strain rate on the strain-induced γ→ α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A. 2005;36:421–32.
  • [141] Tsuchida N, Yamaguchi Y, Morimoto Y, Tonan T, Takagi Y, Ueji R. Effects of temperature and strain rate on TRIP effect in SUS301L metastable austenitic stainless steel. ISIJ Int. 2013;53:1881–7.
  • [142] Acharya S, Moitra A, Bysakh S, Nanibabu M, Krishanan SA, Mukhopadhyay CK, Rajkumar KV, Sasikala G, Mukhopadhyay A, Mondal DK, Ghosh KS, Jha BB, Muraleedharan K. Effect of high strain rate deformation on the properties of SS304L and SS316LN alloys. Mech Mater. 2019;136:103073.
  • [143] Diani JM, Parks DM. Effects of strain state on the kinetics of strain-induced martensite in steels. J Mech Phys Solids. 1998;46:1613–35.
  • [144] Nakada N, Ito H, Matsuoka Y, Tsuchiyama T, Takaki S. Deformation-induced martensitic transformation behavior in coldrolled and cold-drawn type 316 stainless steels. Acta Mater. 2010;58:895–903.
  • [145] Perdahcıoğlu ES, Geijselaers HJM, Huetink J. Influence of stress state and strain path on deformation induced martensitic transformations. Mater Sci Eng A. 2008;481:727–31.
  • [146] Mansourinejad M, Ketabchi M. Influence of strain state on the kinetics of martensitic transformation induced plasticity (TRIP) in AISI 304 stainless steel. Steel Res Int. 2018;89:1700359.
  • [147] Beese AM, Mohr D. Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation. Acta Mater. 2011;59:2589–600.
  • [148] Sun G, Du L, Hu J, Zhang B. Significant influence of rolling modes on martensitic transformation, microstructural evolution and texture development in a 304 stainless steel. Mater Charact. 2020;159:110073.
  • [149] Tourki Z, Bargui H, Sidhom H. The kinetic of induced martensitic formation and its effect on forming limit curves in the AISI 304 stainless steel. J Mater Process Technol. 2005;166:330–6.
  • [150] Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975;6:791–5.
  • [151] Naghizadeh M, Mirzadeh H. Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel. Vacuum. 2018;157:243–8.
  • [152] Zheng C, Jiang H, Hao X, Ye J, Li L, Li D. Tailoring mechanical behavior of a fine-grained metastable austenitic stainless steel by pre-straining. Mater Sci Eng A. 2019;746:332–40.
  • [153] San Martín D, Aarts KWP, Rivera-Díaz-del-Castillo PEJ, van Dijk NH, Brück E, van der Zwaag S. Isothermal martensitic transformation in a 12Cr–9Ni–4Mo–2Cu stainless steel in applied magnetic fields. J Magn Magn Mater. 2008;320:1722–8.
  • [154] Sjöberg J. Influence of analysis on the properties of stainless spring steel. Wire. 1973;23:155–8.
  • [155] Talonen J, Hänninen H. Formation of shear bands and straininduced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007;55:6108–18.
  • [156] Eichelman GH, Hull FC. The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8-type stainless steel. Trans Am Soc Metall. 1953;45:77–104.
  • [157] Schramm RE, Reed RP. Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A. 1975;6:1345–51.
  • [158] Noh HS, Kang JH, Kim KM, Kim SJ. Different effects of Ni and Mn on thermodynamic and mechanical stabilities in Cr–Ni–Mn austenitic steels. Metall Mater Trans A. 2019;50:616–24.
  • [159] Dai QX, Wang AD, Cheng XN, Luo XM. Stacking fault energy of cryogenic austenitic steels. Chin Phys. 2002;11:596–600.
  • [160] Saeed-Akbari A, Imlau J, Prahl U, Bleck W. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A. 2009;40:3076–90.
  • [161] Abdi A, Mirzadeh H, Sohrabi MJ, Naghizadeh M. Phase transformation kinetics during annealing of cold-rolled AISI 309Si stainless steel. Metall Mater Trans A. 2020;51:1955–9.
  • [162] Odnobokova M, Belyakov A, Kipelova A, Kaibyshev R. Formation of ultrafine-grained structures in 304L and 316L stainless steels by recrystallization and reverse phase transformation. Mater Sci Forum. 2016;838:410–5.
  • [163] Hedayati A, Najafizadeh A, Kermanpur A, Forouzan F. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. J Mater Process Technol. 2010;210:1017–22.
  • [164] Sadeghpour S, Kermanpur A, Najafizadeh A. Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Mater Sci Eng A. 2013;584:177–83.
  • [165] Misra RDK, Challa VSA, Venkatsurya PKC, Shen YF, Somani MC, Karjalainen LP. Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversioninduced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Mater. 2015;84:339–48.
  • [166] Järvenpää A, Jaskari M, Juuti T, Karjalainen P. Demonstrating the effect of precipitation on the mechanical stability of finegrained austenite in reversion-treated 301LN stainless steel. Metals. 2017;7:344.
  • [167] Staudhammer KP, Murr LE, Hecker SS. Nucleation and evolution of strain-induced martensitic (bcc) embryos and substructure in stainless steel: a transmission electron microscope study. Acta Metall. 1983;31:267–74.
  • [168] Ferreira PJ, Vander Sande JB, Fortes MA, Kyrolainen A. Microstructure development during high-velocity deformation. Metall Mater Trans A. 2004;35:3091–101.
  • [169] Iwamoto T, Tsuta T, Tomita Y. Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. Int J Mech Sci. 1998;40:173–82.
  • [170] Naghizadeh M, Mirzadeh H. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing. Mater Res Express. 2018;5:056529.
  • [171] Shin HC, Ha TK, Chang YW. Kinetics of deformation induced martensitic transformation in a 304 stainless steel. Scripta Mater. 2001;45:823–9.
  • [172] Jeon JB, Chang YW. Effect of nitrogen on deformation-induced martensitic transformation in an austenitic 301 stainless steels. Metals. 2017;7:503.
  • [173] Mansourinejad M, Ketabchi M. Modification of Olson-Cohen model for predicting stress-state dependency of martensitic transformation. Mater Sci Technol. 2017;33:1948–54.
  • [174] Ahmedabadi PM, Kain V, Agrawal A. Modelling kinetics of strain-induced martensite transformation during plastic deformation of austenitic stainless steel. Mater Des. 2016;109:466–75.
  • [175] Tavares SSM, Pardal JM, Gomes da Silva MJ, Abreu HFG, da Silva MR. Deformation induced martensitic transformation in a 201 modified austenitic stainless steel. Mater Charact. 2009;60:907–11.
  • [176] Moallemi M, Kermanpur A, Najafizadeh A, Rezaee A, Samaei Baghbadorani H, Dastranjy Nezhadfar P. Deformation-induced martensitic transformation in a 201 austenitic steel: the synergy of stacking fault energy and chemical driving force. Mater Sci Eng A. 2016;653:147–52.
  • [177] Guimaraes JRC. The deformation-induced martensitic reaction in polycrystalline Fe-30.7 Ni-0.06 C. Scripta Metall. 1972;6:795–8.
  • [178] Christian JW. The theory of transformations in metals and alloys, vol. 1. 3rd edn. Oxford: Pergamon Press; 2002.
  • [179] Tomita Y, Iwamoto T. Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. Int J Mech Sci. 1995;37:1295–305.
  • [180] Mirzadeh H, Najafizadeh A. ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels. J Alloy Compd. 2009;476:352–5.
  • [181] Das A, Tarafder S, Chakraborti PC. Estimation of deformation induced martensite in austenitic stainless steels. Mater Sci Eng A. 2011;529:9–20.
  • [182] Spencer K, Embury JD, Conlon KT, Véron M, Bréchet Y. Strengthening via the formation of strain-induced martensite in stainless steels. Mater Sci Eng A. 2004;387:873–81.
  • [183] Dieter GE. Mechanical metallurgy. 3rd ed. New York: McGraw-Hill; 1988.
  • [184] Milad M, Zreiba N, Elhalouani F, Baradai C. The effect of cold work on structure and properties of AISI 304 stainless steel. J Mater Process Technol. 2008;203:80–5.
  • [185] Mahmoudiniya M, Kheirandish S, Asadiasadabad M. The effect of cold rolling on microstructure and mechanical properties of a new Cr–Mn austenitic stainless steel in comparison with AISI 316 stainless steel. Trans Indian Inst Met. 2017;70:1251–9.
  • [186] Mirzaie T, Mirzadeh H, Naghizadeh M. Contribution of different hardening mechanisms during cold working of AISI 304L austenitic stainless steel. Arch Metall Mater. 2018;63:1317–20.
  • [187] Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civil Mech Eng. 2008;8:103–17.
  • [188] Byun TS, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004;52:3889–99.
  • [189] Weiß A, Gutte H, Scheller PR. Deformation induced martensite formation and its effect on transformation induced plasticity (TRIP). Steel Res Int. 2006;77:727–32.
  • [190] Cios G, Tokarski T, Żywczak A, Dziurka R, Stępień M, Gondek Ł, Marciszko M, Pawłowski B, Wieczerzak K, Bała P. The investigation of strain-induced martensite reverse transformation in AISI 304 austenitic stainless steel. Metall Mater Trans A. 2017;48:4999–5008.
  • [191] De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • [192] Molnár D, Sun X, Lu S, Li W, Engberg G, Vitos L. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater Sci Eng A. 2019;759:490–7.
  • [193] Kisko A, Hamada AS, Talonen J, Porter D, Karjalainen LP. Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Mater Sci Eng A. 2016;657:359–70.
  • [194] Sun GS, Du LX, Hu J, Misra RDK. Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing. Mater Sci Eng A. 2018;709:254–64.
  • [195] Behjati P, Kermanpur A, Najafizadeh A, Samaei Baghbadorani H, Karjalainen LP, Jung JG, Lee YK. Effect of nitrogen content on grain refinement and mechanical properties of a reversiontreated Ni-free 18Cr-12Mn austenitic stainless steel. Metall Mater Trans A. 2014;45:6317–28.
  • [196] Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyröläinen A. Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metall Mater Trans A. 2009;40:729–44.
  • [197] Järvenpää A, Jaskari M, Karjalainen LP. Reversed microstructures and tensile properties after various cold rolling reductions in AISI 301LN steel. Metals. 2018;8:109.
  • [198] Haeßner F, Plaut RL, Padilha AF. Separation of static recrystallization and reverse transformation of deformation-induced martensite in an austenitic stainless steel by calorimetric measurements. ISIJ Int. 2003;43:1472–4.
  • [199] Sun G, Du L, Hu J, Zhang B, Misra RDK. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel. Mater Sci Eng A. 2019;746:341–55.
  • [200] di Schino A, Salvatori I, Kenny JM. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J Mater Sci. 2002;37:4561–5.
  • [201] Li J, Cao Y, Gao B, Li Y, Zhu Y. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J Mater Sci. 2018;53:10442–56.
  • [202] Li J, Gao B, Huang Z, Zhou H, Mao Q, Li Y. Design for strengthductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum. 2018;157:128–35.
  • [203] Wang S, Li J, Cao Y, Gao B, Mao Q, Li Y. Thermal stability and tensile property of 316L stainless steel with heterogeneous lamella structure. Vacuum. 2018;152:261–4.
  • [204] Qin W, Li J, Liu Y, Kang J, Zhu L, Shu D, Peng P, She D, Meng D, Li Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater Lett. 2019;254:116–9.
  • [205] Shakhova I, Dudko V, Belyakov A, Tsuzaki K, Kaibyshev R. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Mater Sci Eng A. 2012;545:176–86.
  • [206] Xu DM, Li GQ, Wan XL, Misra RDK, Yu JX, Xu G. On the deformation mechanism of austenitic stainless steel at elevated temperatures: a critical analysis of fine-grained versus coarsegrained structure. Mater Sci Eng A. 2020;773:138722.
  • [207] Rajasekhara S, Ferreira PJ. Martensite - austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Mater. 2011;59:738–48.
  • [208] Stalder M, Vogel S, Bourke MAM, Maldonado JG, Thoma DJ, Yuan VW. Retransformation (α′→ γ) kinetics of strain induced martensite in 304 stainless steel. Mater Sci Eng A. 2000;280:270–81.
  • [209] Mirzadeh H, Najafizadeh A. Modeling the reversion of martensite in the cold worked AISI 304 stainless steel by artificial neural networks. Mater Des. 2009;30:570–3.
  • [210] Naghizadeh M, Mirzadeh H. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall Mater Trans A. 2016;47:5698–703.
  • [211] Rasouli D, Kermanpur A, Ghassemali E, Najafizadeh A. On the reversion and recrystallization of austenite in the interstitially alloyed Ni-free nano/ultrafine grained austenitic stainless steels. Met Mater Int. 2019;25:846–59.
  • [212] Ma Y, Jin JE, Lee YK. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater. 2005;52:1311–5.
  • [213] He YM, Wang YH, Guo K, Wang TS. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mater Sci Eng A. 2017;708:248–53.
  • [214] Mandal S, Bhaduri AK, Sarma VS. One-step and iterative thermo-mechanical treatments to enhance Σ3n boundaries in a Timodified austenitic stainless steel. J Mater Sci. 2011;46:275–84.
  • [215] Sun GS, Du LX, Hu J, Xie H, Wu HY, Misra RDK. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Mater Charact. 2015;110:228–35.
  • [216] Nanda T, Ravi Kumar B, Singh V. A thermal cycling route for processing nano-grains in AISI 316L stainless steel for improved tensile deformation behaviour. Def Sci J. 2016;66:529–35.
  • [217] Ravi Kumar B, Gujral A. Plastic deformation modes in mono-and bimodal-type ultrafine-grained austenitic stainless steel. Metallogr Microstruct Anal. 2014;3:397–407.
  • [218] Misra RDK, Nayak S, Venkatasurya PKC, Ramuni V, Somani MC, Karjalainen LP. Nanograined/ultrafine-grained structure and tensile deformation behavior of shear phase reversioninduced 301 austenitic stainless steel. Metall Mater Trans A. 2010;41:2162–74.
  • [219] Poulon A, Brochet S, Vogt JB, Glez JC, Mithieux JD. Fine grained austenitic stainless steels: the role of strain induced α′ martensite and the reversion mechanism limitations. ISIJ Int. 2009;49:293–301.
  • [220] Kaufman L, Clougherty EV, Weiss RJ. The lattice stability of metals-III. Iron Acta Metall. 1963;11:323–35.
  • [221] Bendick W, Pepperhoff W. On the α/γ phase stability of iron. Acta Metall. 1982;30:679–84.
  • [222] Jiang W, Ye D, Li J, Su J, Zhao K. Reverse transformation mechanizm of martensite to austenite in 00Cr15Ni7Mo2WCu2 super martensitic stainless steel. Steel Res Int. 2014;85:1150–7.
  • [223] Tiamiyu AA, Szpunar JA, Odeshi AG, Oguocha I, Eskandari M. Development of ultra-fine-grained structure in AISI 321 austenitic stainless steel. Metall Mater Trans A. 2017;48:5990–6012.
  • [224] Celada-Casero C, Huang BM, Aranda MM, Yang JR, SanMartin D. Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel. Mater Charact. 2016;118:129–41.
  • [225] Johannsen DL, Kyrolainen A, Ferreira PJ. Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 austenitic stainless steels. Metall Mater Trans A. 2006;37:2325–38.
  • [226] Knutsson A, Hedström P, Odén M. Reverse martensitic transformation and resulting microstructure in a cold rolled metastable austenitic stainless steel. Steel Res Int. 2008;79:433–9.
  • [227] Samaei Baghbadorani H, Kermanpur A, Najafizadeh A, Behjati P, Moallemi M, Rezaee A. Influence of Nb-microalloying on the formation of nano/ultrafine-grained microstructure and mechanical properties during martensite reversion process in a 201-type austenitic stainless steel. Metall Mater Trans A. 2015;46:3406–13.
  • [228] Eskandari M, Zarei-Hanzaki A, Abedi HR. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels. Mater Des. 2013;45:674–81.
  • [229] Smith H, West DRF. Carbide precipitation and the reversion of martensite to austenite in a semi-austenitic stainless steel. Metals Technol. 1974;1:295–9.
  • [230] Yang ST, Hwang WS, Shyr TW. Reverse transformation from α′ to γ in lightly and heavily cold-drawn austenitic stainless steel fibers. Met Mater Int. 2013;19:1181–5.
  • [231] Lee SH, Lee JC, Choi JY, Nam WJ. Effects of deformation strain and aging temperature on strain aging behavior in a 304 stainless steel. Met Mater Int. 2010;16:21–6.
  • [232] Lee SH, Choi JY, Nam WJ. Hardening behavior of a 304 stainless steel containing deformation-induced martensite during static strain aging. Mater Trans. 2009;50:926–9.
  • [233] Montanari R. Increase of martensite content in cold rolled AISI 304 steel produced by annealing at 400 °C. Mater Lett. 1990;10:57–61.
  • [234] Gauzzi F, Montanari R, Principi G, Perin A, Tata ME. Martensite formation during heat treatments of AISI 304 steel with biphasic structure. Mater Sci Eng A. 1999;273:443–7.
  • [235] Gauzzi F, Montanari R, Principi G, Tata ME. AISI 304 steel: anomalous evolution of martensitic phase following heat treatments at 400 °C. Mater Sci Eng A. 2006;438:202–6.
  • [236] Zhou Z, Wang S, Li J, Li Y, Wu X, Zhu Y. Hardening after annealing in nanostructured 316L stainless steel. Nano Mater Scis. 2020;2:80–2.
  • [237] Aletdinov A, Mironov S, Korznikova GF, Konkova T, Zaripova RG, Myshlyaev MM, Semiatin SL. Martensite-to-austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel. Metall Mater Trans A. 2019;50:1346–57.
  • [238] Shirdel M, Mirzadeh H, Parsa MH. Enhanced mechanical properties of microalloyed austenitic stainless steel produced by martensite treatment. Adv Eng Mater. 2015;17:1226–333.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-462f4262-169c-43ab-875e-3ba6bab1164b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.